Metamath Proof Explorer


Theorem signstf

Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018)

Ref Expression
Hypotheses signsv.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
signsv.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
signsv.t 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓𝑖 ) ) ) ) ) )
signsv.v 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
Assertion signstf ( 𝐹 ∈ Word ℝ → ( 𝑇𝐹 ) ∈ Word ℝ )

Proof

Step Hyp Ref Expression
1 signsv.p = ( 𝑎 ∈ { - 1 , 0 , 1 } , 𝑏 ∈ { - 1 , 0 , 1 } ↦ if ( 𝑏 = 0 , 𝑎 , 𝑏 ) )
2 signsv.w 𝑊 = { ⟨ ( Base ‘ ndx ) , { - 1 , 0 , 1 } ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ }
3 signsv.t 𝑇 = ( 𝑓 ∈ Word ℝ ↦ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝑓𝑖 ) ) ) ) ) )
4 signsv.v 𝑉 = ( 𝑓 ∈ Word ℝ ↦ Σ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇𝑓 ) ‘ 𝑗 ) ≠ ( ( 𝑇𝑓 ) ‘ ( 𝑗 − 1 ) ) , 1 , 0 ) )
5 1 2 3 4 signstfv ( 𝐹 ∈ Word ℝ → ( 𝑇𝐹 ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↦ ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝐹𝑖 ) ) ) ) ) )
6 neg1rr - 1 ∈ ℝ
7 0re 0 ∈ ℝ
8 1re 1 ∈ ℝ
9 tpssi ( ( - 1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ ) → { - 1 , 0 , 1 } ⊆ ℝ )
10 6 7 8 9 mp3an { - 1 , 0 , 1 } ⊆ ℝ
11 1 2 signswbase { - 1 , 0 , 1 } = ( Base ‘ 𝑊 )
12 1 2 signswmnd 𝑊 ∈ Mnd
13 12 a1i ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑊 ∈ Mnd )
14 fzo0ssnn0 ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ℕ0
15 nn0uz 0 = ( ℤ ‘ 0 )
16 14 15 sseqtri ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( ℤ ‘ 0 )
17 16 a1i ( 𝐹 ∈ Word ℝ → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( ℤ ‘ 0 ) )
18 17 sselda ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑛 ∈ ( ℤ ‘ 0 ) )
19 wrdf ( 𝐹 ∈ Word ℝ → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ )
20 19 ad2antrr ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑛 ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ )
21 fzssfzo ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 0 ... 𝑛 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
22 21 adantl ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 0 ... 𝑛 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
23 22 sselda ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑛 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )
24 20 23 ffvelrnd ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑛 ) ) → ( 𝐹𝑖 ) ∈ ℝ )
25 24 rexrd ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑛 ) ) → ( 𝐹𝑖 ) ∈ ℝ* )
26 sgncl ( ( 𝐹𝑖 ) ∈ ℝ* → ( sgn ‘ ( 𝐹𝑖 ) ) ∈ { - 1 , 0 , 1 } )
27 25 26 syl ( ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑛 ) ) → ( sgn ‘ ( 𝐹𝑖 ) ) ∈ { - 1 , 0 , 1 } )
28 11 13 18 27 gsumncl ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝐹𝑖 ) ) ) ) ∈ { - 1 , 0 , 1 } )
29 10 28 sseldi ( ( 𝐹 ∈ Word ℝ ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑊 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( sgn ‘ ( 𝐹𝑖 ) ) ) ) ∈ ℝ )
30 5 29 fmpt3d ( 𝐹 ∈ Word ℝ → ( 𝑇𝐹 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ )
31 iswrdi ( ( 𝑇𝐹 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ → ( 𝑇𝐹 ) ∈ Word ℝ )
32 30 31 syl ( 𝐹 ∈ Word ℝ → ( 𝑇𝐹 ) ∈ Word ℝ )