| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p | ⊢  ⨣   =  ( 𝑎  ∈  { - 1 ,  0 ,  1 } ,  𝑏  ∈  { - 1 ,  0 ,  1 }  ↦  if ( 𝑏  =  0 ,  𝑎 ,  𝑏 ) ) | 
						
							| 2 |  | signsv.w | ⊢ 𝑊  =  { 〈 ( Base ‘ ndx ) ,  { - 1 ,  0 ,  1 } 〉 ,  〈 ( +g ‘ ndx ) ,   ⨣  〉 } | 
						
							| 3 |  | signsv.t | ⊢ 𝑇  =  ( 𝑓  ∈  Word  ℝ  ↦  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝑓 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v | ⊢ 𝑉  =  ( 𝑓  ∈  Word  ℝ  ↦  Σ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝑓 ) ) if ( ( ( 𝑇 ‘ 𝑓 ) ‘ 𝑗 )  ≠  ( ( 𝑇 ‘ 𝑓 ) ‘ ( 𝑗  −  1 ) ) ,  1 ,  0 ) ) | 
						
							| 5 | 1 2 3 4 | signstfv | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝑇 ‘ 𝐹 )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↦  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 6 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 7 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 8 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 9 |  | tpssi | ⊢ ( ( - 1  ∈  ℝ  ∧  0  ∈  ℝ  ∧  1  ∈  ℝ )  →  { - 1 ,  0 ,  1 }  ⊆  ℝ ) | 
						
							| 10 | 6 7 8 9 | mp3an | ⊢ { - 1 ,  0 ,  1 }  ⊆  ℝ | 
						
							| 11 | 1 2 | signswbase | ⊢ { - 1 ,  0 ,  1 }  =  ( Base ‘ 𝑊 ) | 
						
							| 12 | 1 2 | signswmnd | ⊢ 𝑊  ∈  Mnd | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑊  ∈  Mnd ) | 
						
							| 14 |  | fzo0ssnn0 | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ℕ0 | 
						
							| 15 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 16 | 14 15 | sseqtri | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( ℤ≥ ‘ 0 ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ⊆  ( ℤ≥ ‘ 0 ) ) | 
						
							| 18 | 17 | sselda | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 19 |  | wrdf | ⊢ ( 𝐹  ∈  Word  ℝ  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑛 ) )  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ ) | 
						
							| 21 |  | fzssfzo | ⊢ ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 0 ... 𝑛 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 0 ... 𝑛 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 23 | 22 | sselda | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑛 ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 24 | 20 23 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 25 | 24 | rexrd | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 26 |  | sgncl | ⊢ ( ( 𝐹 ‘ 𝑖 )  ∈  ℝ*  →  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑖  ∈  ( 0 ... 𝑛 ) )  →  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 28 | 11 13 18 27 | gsumncl | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  ∈  { - 1 ,  0 ,  1 } ) | 
						
							| 29 | 10 28 | sselid | ⊢ ( ( 𝐹  ∈  Word  ℝ  ∧  𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑊  Σg  ( 𝑖  ∈  ( 0 ... 𝑛 )  ↦  ( sgn ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 30 | 5 29 | fmpt3d | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝑇 ‘ 𝐹 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ ) | 
						
							| 31 |  | iswrdi | ⊢ ( ( 𝑇 ‘ 𝐹 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ ℝ  →  ( 𝑇 ‘ 𝐹 )  ∈  Word  ℝ ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝐹  ∈  Word  ℝ  →  ( 𝑇 ‘ 𝐹 )  ∈  Word  ℝ ) |