Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
1 2 3 4
|
signstfv |
|- ( F e. Word RR -> ( T ` F ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) ) |
6 |
|
neg1rr |
|- -u 1 e. RR |
7 |
|
0re |
|- 0 e. RR |
8 |
|
1re |
|- 1 e. RR |
9 |
|
tpssi |
|- ( ( -u 1 e. RR /\ 0 e. RR /\ 1 e. RR ) -> { -u 1 , 0 , 1 } C_ RR ) |
10 |
6 7 8 9
|
mp3an |
|- { -u 1 , 0 , 1 } C_ RR |
11 |
1 2
|
signswbase |
|- { -u 1 , 0 , 1 } = ( Base ` W ) |
12 |
1 2
|
signswmnd |
|- W e. Mnd |
13 |
12
|
a1i |
|- ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> W e. Mnd ) |
14 |
|
fzo0ssnn0 |
|- ( 0 ..^ ( # ` F ) ) C_ NN0 |
15 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
16 |
14 15
|
sseqtri |
|- ( 0 ..^ ( # ` F ) ) C_ ( ZZ>= ` 0 ) |
17 |
16
|
a1i |
|- ( F e. Word RR -> ( 0 ..^ ( # ` F ) ) C_ ( ZZ>= ` 0 ) ) |
18 |
17
|
sselda |
|- ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> n e. ( ZZ>= ` 0 ) ) |
19 |
|
wrdf |
|- ( F e. Word RR -> F : ( 0 ..^ ( # ` F ) ) --> RR ) |
20 |
19
|
ad2antrr |
|- ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> F : ( 0 ..^ ( # ` F ) ) --> RR ) |
21 |
|
fzssfzo |
|- ( n e. ( 0 ..^ ( # ` F ) ) -> ( 0 ... n ) C_ ( 0 ..^ ( # ` F ) ) ) |
22 |
21
|
adantl |
|- ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> ( 0 ... n ) C_ ( 0 ..^ ( # ` F ) ) ) |
23 |
22
|
sselda |
|- ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
24 |
20 23
|
ffvelrnd |
|- ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> ( F ` i ) e. RR ) |
25 |
24
|
rexrd |
|- ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> ( F ` i ) e. RR* ) |
26 |
|
sgncl |
|- ( ( F ` i ) e. RR* -> ( sgn ` ( F ` i ) ) e. { -u 1 , 0 , 1 } ) |
27 |
25 26
|
syl |
|- ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> ( sgn ` ( F ` i ) ) e. { -u 1 , 0 , 1 } ) |
28 |
11 13 18 27
|
gsumncl |
|- ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) e. { -u 1 , 0 , 1 } ) |
29 |
10 28
|
sselid |
|- ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) e. RR ) |
30 |
5 29
|
fmpt3d |
|- ( F e. Word RR -> ( T ` F ) : ( 0 ..^ ( # ` F ) ) --> RR ) |
31 |
|
iswrdi |
|- ( ( T ` F ) : ( 0 ..^ ( # ` F ) ) --> RR -> ( T ` F ) e. Word RR ) |
32 |
30 31
|
syl |
|- ( F e. Word RR -> ( T ` F ) e. Word RR ) |