| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 | 1 2 3 4 | signstfv |  |-  ( F e. Word RR -> ( T ` F ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) ) | 
						
							| 6 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 7 |  | 0re |  |-  0 e. RR | 
						
							| 8 |  | 1re |  |-  1 e. RR | 
						
							| 9 |  | tpssi |  |-  ( ( -u 1 e. RR /\ 0 e. RR /\ 1 e. RR ) -> { -u 1 , 0 , 1 } C_ RR ) | 
						
							| 10 | 6 7 8 9 | mp3an |  |-  { -u 1 , 0 , 1 } C_ RR | 
						
							| 11 | 1 2 | signswbase |  |-  { -u 1 , 0 , 1 } = ( Base ` W ) | 
						
							| 12 | 1 2 | signswmnd |  |-  W e. Mnd | 
						
							| 13 | 12 | a1i |  |-  ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> W e. Mnd ) | 
						
							| 14 |  | fzo0ssnn0 |  |-  ( 0 ..^ ( # ` F ) ) C_ NN0 | 
						
							| 15 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 16 | 14 15 | sseqtri |  |-  ( 0 ..^ ( # ` F ) ) C_ ( ZZ>= ` 0 ) | 
						
							| 17 | 16 | a1i |  |-  ( F e. Word RR -> ( 0 ..^ ( # ` F ) ) C_ ( ZZ>= ` 0 ) ) | 
						
							| 18 | 17 | sselda |  |-  ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> n e. ( ZZ>= ` 0 ) ) | 
						
							| 19 |  | wrdf |  |-  ( F e. Word RR -> F : ( 0 ..^ ( # ` F ) ) --> RR ) | 
						
							| 20 | 19 | ad2antrr |  |-  ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> F : ( 0 ..^ ( # ` F ) ) --> RR ) | 
						
							| 21 |  | fzssfzo |  |-  ( n e. ( 0 ..^ ( # ` F ) ) -> ( 0 ... n ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> ( 0 ... n ) C_ ( 0 ..^ ( # ` F ) ) ) | 
						
							| 23 | 22 | sselda |  |-  ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> i e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 24 | 20 23 | ffvelcdmd |  |-  ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> ( F ` i ) e. RR ) | 
						
							| 25 | 24 | rexrd |  |-  ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> ( F ` i ) e. RR* ) | 
						
							| 26 |  | sgncl |  |-  ( ( F ` i ) e. RR* -> ( sgn ` ( F ` i ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) /\ i e. ( 0 ... n ) ) -> ( sgn ` ( F ` i ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 28 | 11 13 18 27 | gsumncl |  |-  ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) e. { -u 1 , 0 , 1 } ) | 
						
							| 29 | 10 28 | sselid |  |-  ( ( F e. Word RR /\ n e. ( 0 ..^ ( # ` F ) ) ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) e. RR ) | 
						
							| 30 | 5 29 | fmpt3d |  |-  ( F e. Word RR -> ( T ` F ) : ( 0 ..^ ( # ` F ) ) --> RR ) | 
						
							| 31 |  | iswrdi |  |-  ( ( T ` F ) : ( 0 ..^ ( # ` F ) ) --> RR -> ( T ` F ) e. Word RR ) | 
						
							| 32 | 30 31 | syl |  |-  ( F e. Word RR -> ( T ` F ) e. Word RR ) |