| Step | Hyp | Ref | Expression | 
						
							| 1 |  | signsv.p |  |-  .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) | 
						
							| 2 |  | signsv.w |  |-  W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } | 
						
							| 3 |  | signsv.t |  |-  T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) | 
						
							| 4 |  | signsv.v |  |-  V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) | 
						
							| 5 | 1 2 3 4 | signstfv |  |-  ( F e. Word RR -> ( T ` F ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( T ` F ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) ) | 
						
							| 7 |  | simpr |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ n = N ) -> n = N ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ n = N ) -> ( 0 ... n ) = ( 0 ... N ) ) | 
						
							| 9 | 8 | mpteq1d |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ n = N ) -> ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) = ( i e. ( 0 ... N ) |-> ( sgn ` ( F ` i ) ) ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ n = N ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) = ( W gsum ( i e. ( 0 ... N ) |-> ( sgn ` ( F ` i ) ) ) ) ) | 
						
							| 11 |  | simpr |  |-  ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 12 |  | ovexd |  |-  ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( W gsum ( i e. ( 0 ... N ) |-> ( sgn ` ( F ` i ) ) ) ) e. _V ) | 
						
							| 13 | 6 10 11 12 | fvmptd |  |-  ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) = ( W gsum ( i e. ( 0 ... N ) |-> ( sgn ` ( F ` i ) ) ) ) ) |