Step |
Hyp |
Ref |
Expression |
1 |
|
signsv.p |
|- .+^ = ( a e. { -u 1 , 0 , 1 } , b e. { -u 1 , 0 , 1 } |-> if ( b = 0 , a , b ) ) |
2 |
|
signsv.w |
|- W = { <. ( Base ` ndx ) , { -u 1 , 0 , 1 } >. , <. ( +g ` ndx ) , .+^ >. } |
3 |
|
signsv.t |
|- T = ( f e. Word RR |-> ( n e. ( 0 ..^ ( # ` f ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( f ` i ) ) ) ) ) ) |
4 |
|
signsv.v |
|- V = ( f e. Word RR |-> sum_ j e. ( 1 ..^ ( # ` f ) ) if ( ( ( T ` f ) ` j ) =/= ( ( T ` f ) ` ( j - 1 ) ) , 1 , 0 ) ) |
5 |
1 2 3 4
|
signstfv |
|- ( F e. Word RR -> ( T ` F ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) ) |
6 |
5
|
adantr |
|- ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( T ` F ) = ( n e. ( 0 ..^ ( # ` F ) ) |-> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) ) ) |
7 |
|
simpr |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ n = N ) -> n = N ) |
8 |
7
|
oveq2d |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ n = N ) -> ( 0 ... n ) = ( 0 ... N ) ) |
9 |
8
|
mpteq1d |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ n = N ) -> ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) = ( i e. ( 0 ... N ) |-> ( sgn ` ( F ` i ) ) ) ) |
10 |
9
|
oveq2d |
|- ( ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) /\ n = N ) -> ( W gsum ( i e. ( 0 ... n ) |-> ( sgn ` ( F ` i ) ) ) ) = ( W gsum ( i e. ( 0 ... N ) |-> ( sgn ` ( F ` i ) ) ) ) ) |
11 |
|
simpr |
|- ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> N e. ( 0 ..^ ( # ` F ) ) ) |
12 |
|
ovexd |
|- ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( W gsum ( i e. ( 0 ... N ) |-> ( sgn ` ( F ` i ) ) ) ) e. _V ) |
13 |
6 10 11 12
|
fvmptd |
|- ( ( F e. Word RR /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( ( T ` F ) ` N ) = ( W gsum ( i e. ( 0 ... N ) |-> ( sgn ` ( F ` i ) ) ) ) ) |