Metamath Proof Explorer


Theorem simprimi

Description: Inference associated with simprim . Proved exactly as step 11 is obtained from step 4 in dfbi1ALTa . (Contributed by Eric Schmidt, 22-Oct-2025) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis simprimi.1
|- -. ( ph -> -. ps )
Assertion simprimi
|- ps

Proof

Step Hyp Ref Expression
1 simprimi.1
 |-  -. ( ph -> -. ps )
2 tru
 |-  T.
3 ax-1
 |-  ( -. ps -> ( ph -> -. ps ) )
4 1 a1i
 |-  ( -. -. T. -> -. ( ph -> -. ps ) )
5 4 con4i
 |-  ( ( ph -> -. ps ) -> -. T. )
6 5 a1i
 |-  ( -. ps -> ( ( ph -> -. ps ) -> -. T. ) )
7 6 a2i
 |-  ( ( -. ps -> ( ph -> -. ps ) ) -> ( -. ps -> -. T. ) )
8 3 7 ax-mp
 |-  ( -. ps -> -. T. )
9 8 con4i
 |-  ( T. -> ps )
10 2 9 ax-mp
 |-  ps