| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smndex1ibas.m |
|- M = ( EndoFMnd ` NN0 ) |
| 2 |
|
smndex1ibas.n |
|- N e. NN |
| 3 |
|
smndex1ibas.i |
|- I = ( x e. NN0 |-> ( x mod N ) ) |
| 4 |
|
smndex1ibas.g |
|- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
| 5 |
|
smndex1mgm.b |
|- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
| 6 |
|
smndex1mgm.s |
|- S = ( M |`s B ) |
| 7 |
1 2 3 4 5
|
smndex1basss |
|- B C_ ( Base ` M ) |
| 8 |
|
dfss |
|- ( B C_ ( Base ` M ) <-> B = ( B i^i ( Base ` M ) ) ) |
| 9 |
7 8
|
mpbi |
|- B = ( B i^i ( Base ` M ) ) |
| 10 |
|
snex |
|- { I } e. _V |
| 11 |
|
ovex |
|- ( 0 ..^ N ) e. _V |
| 12 |
|
snex |
|- { ( G ` n ) } e. _V |
| 13 |
11 12
|
iunex |
|- U_ n e. ( 0 ..^ N ) { ( G ` n ) } e. _V |
| 14 |
10 13
|
unex |
|- ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) e. _V |
| 15 |
5 14
|
eqeltri |
|- B e. _V |
| 16 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 17 |
6 16
|
ressbas |
|- ( B e. _V -> ( B i^i ( Base ` M ) ) = ( Base ` S ) ) |
| 18 |
15 17
|
ax-mp |
|- ( B i^i ( Base ` M ) ) = ( Base ` S ) |
| 19 |
9 18
|
eqtr2i |
|- ( Base ` S ) = B |