| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smndex2dbas.m |
|- M = ( EndoFMnd ` NN0 ) |
| 2 |
|
smndex2dbas.b |
|- B = ( Base ` M ) |
| 3 |
|
smndex2dbas.0 |
|- .0. = ( 0g ` M ) |
| 4 |
|
smndex2dbas.d |
|- D = ( x e. NN0 |-> ( 2 x. x ) ) |
| 5 |
|
2nn0 |
|- 2 e. NN0 |
| 6 |
5
|
a1i |
|- ( x e. NN0 -> 2 e. NN0 ) |
| 7 |
|
id |
|- ( x e. NN0 -> x e. NN0 ) |
| 8 |
6 7
|
nn0mulcld |
|- ( x e. NN0 -> ( 2 x. x ) e. NN0 ) |
| 9 |
4 8
|
fmpti |
|- D : NN0 --> NN0 |
| 10 |
|
nn0ex |
|- NN0 e. _V |
| 11 |
10
|
mptex |
|- ( x e. NN0 |-> ( 2 x. x ) ) e. _V |
| 12 |
4 11
|
eqeltri |
|- D e. _V |
| 13 |
1 2
|
elefmndbas2 |
|- ( D e. _V -> ( D e. B <-> D : NN0 --> NN0 ) ) |
| 14 |
12 13
|
ax-mp |
|- ( D e. B <-> D : NN0 --> NN0 ) |
| 15 |
9 14
|
mpbir |
|- D e. B |