Metamath Proof Explorer


Theorem smndex2dbas

Description: The doubling function D is an endofunction on NN0 . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses smndex2dbas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex2dbas.b B=BaseM
smndex2dbas.0 0˙=0M
smndex2dbas.d D=x02x
Assertion smndex2dbas DB

Proof

Step Hyp Ref Expression
1 smndex2dbas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex2dbas.b B=BaseM
3 smndex2dbas.0 0˙=0M
4 smndex2dbas.d D=x02x
5 2nn0 20
6 5 a1i x020
7 id x0x0
8 6 7 nn0mulcld x02x0
9 4 8 fmpti D:00
10 nn0ex 0V
11 10 mptex x02xV
12 4 11 eqeltri DV
13 1 2 elefmndbas2 DVDBD:00
14 12 13 ax-mp DBD:00
15 9 14 mpbir DB