| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre |
|- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
| 2 |
|
1cnd |
|- ( ( x e. RR /\ y e. RR ) -> 1 e. CC ) |
| 3 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 4 |
3
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> x e. CC ) |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
5
|
a1i |
|- ( ( x e. RR /\ y e. RR ) -> _i e. CC ) |
| 7 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 8 |
7
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> y e. CC ) |
| 9 |
6 8
|
mulcld |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. y ) e. CC ) |
| 10 |
2 4 9
|
adddid |
|- ( ( x e. RR /\ y e. RR ) -> ( 1 x. ( x + ( _i x. y ) ) ) = ( ( 1 x. x ) + ( 1 x. ( _i x. y ) ) ) ) |
| 11 |
|
remullid |
|- ( x e. RR -> ( 1 x. x ) = x ) |
| 12 |
11
|
adantr |
|- ( ( x e. RR /\ y e. RR ) -> ( 1 x. x ) = x ) |
| 13 |
2 6 8
|
mulassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 1 x. _i ) x. y ) = ( 1 x. ( _i x. y ) ) ) |
| 14 |
|
sn-1ticom |
|- ( 1 x. _i ) = ( _i x. 1 ) |
| 15 |
14
|
oveq1i |
|- ( ( 1 x. _i ) x. y ) = ( ( _i x. 1 ) x. y ) |
| 16 |
15
|
a1i |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 1 x. _i ) x. y ) = ( ( _i x. 1 ) x. y ) ) |
| 17 |
6 2 8
|
mulassd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( _i x. 1 ) x. y ) = ( _i x. ( 1 x. y ) ) ) |
| 18 |
|
remullid |
|- ( y e. RR -> ( 1 x. y ) = y ) |
| 19 |
18
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( 1 x. y ) = y ) |
| 20 |
19
|
oveq2d |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. ( 1 x. y ) ) = ( _i x. y ) ) |
| 21 |
16 17 20
|
3eqtrd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 1 x. _i ) x. y ) = ( _i x. y ) ) |
| 22 |
13 21
|
eqtr3d |
|- ( ( x e. RR /\ y e. RR ) -> ( 1 x. ( _i x. y ) ) = ( _i x. y ) ) |
| 23 |
12 22
|
oveq12d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( 1 x. x ) + ( 1 x. ( _i x. y ) ) ) = ( x + ( _i x. y ) ) ) |
| 24 |
10 23
|
eqtrd |
|- ( ( x e. RR /\ y e. RR ) -> ( 1 x. ( x + ( _i x. y ) ) ) = ( x + ( _i x. y ) ) ) |
| 25 |
|
oveq2 |
|- ( A = ( x + ( _i x. y ) ) -> ( 1 x. A ) = ( 1 x. ( x + ( _i x. y ) ) ) ) |
| 26 |
|
id |
|- ( A = ( x + ( _i x. y ) ) -> A = ( x + ( _i x. y ) ) ) |
| 27 |
25 26
|
eqeq12d |
|- ( A = ( x + ( _i x. y ) ) -> ( ( 1 x. A ) = A <-> ( 1 x. ( x + ( _i x. y ) ) ) = ( x + ( _i x. y ) ) ) ) |
| 28 |
24 27
|
syl5ibrcom |
|- ( ( x e. RR /\ y e. RR ) -> ( A = ( x + ( _i x. y ) ) -> ( 1 x. A ) = A ) ) |
| 29 |
28
|
rexlimivv |
|- ( E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) -> ( 1 x. A ) = A ) |
| 30 |
1 29
|
syl |
|- ( A e. CC -> ( 1 x. A ) = A ) |