Metamath Proof Explorer


Theorem snstrvtxval

Description: The set of vertices of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See vtxvalsnop for the (degenerate) case where V = ( Basendx ) . (Contributed by AV, 23-Sep-2020)

Ref Expression
Hypotheses snstrvtxval.v
|- V e. _V
snstrvtxval.g
|- G = { <. ( Base ` ndx ) , V >. }
Assertion snstrvtxval
|- ( V =/= ( Base ` ndx ) -> ( Vtx ` G ) = V )

Proof

Step Hyp Ref Expression
1 snstrvtxval.v
 |-  V e. _V
2 snstrvtxval.g
 |-  G = { <. ( Base ` ndx ) , V >. }
3 necom
 |-  ( V =/= ( Base ` ndx ) <-> ( Base ` ndx ) =/= V )
4 fvex
 |-  ( Base ` ndx ) e. _V
5 4 1 2 funsndifnop
 |-  ( ( Base ` ndx ) =/= V -> -. G e. ( _V X. _V ) )
6 3 5 sylbi
 |-  ( V =/= ( Base ` ndx ) -> -. G e. ( _V X. _V ) )
7 6 iffalsed
 |-  ( V =/= ( Base ` ndx ) -> if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) = ( Base ` G ) )
8 vtxval
 |-  ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) )
9 8 a1i
 |-  ( V =/= ( Base ` ndx ) -> ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) )
10 2 1strbas
 |-  ( V e. _V -> V = ( Base ` G ) )
11 1 10 mp1i
 |-  ( V =/= ( Base ` ndx ) -> V = ( Base ` G ) )
12 7 9 11 3eqtr4d
 |-  ( V =/= ( Base ` ndx ) -> ( Vtx ` G ) = V )