Step |
Hyp |
Ref |
Expression |
1 |
|
snstrvtxval.v |
|- V e. _V |
2 |
|
snstrvtxval.g |
|- G = { <. ( Base ` ndx ) , V >. } |
3 |
|
necom |
|- ( V =/= ( Base ` ndx ) <-> ( Base ` ndx ) =/= V ) |
4 |
|
fvex |
|- ( Base ` ndx ) e. _V |
5 |
4 1 2
|
funsndifnop |
|- ( ( Base ` ndx ) =/= V -> -. G e. ( _V X. _V ) ) |
6 |
3 5
|
sylbi |
|- ( V =/= ( Base ` ndx ) -> -. G e. ( _V X. _V ) ) |
7 |
6
|
iffalsed |
|- ( V =/= ( Base ` ndx ) -> if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) = ( Base ` G ) ) |
8 |
|
vtxval |
|- ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) |
9 |
8
|
a1i |
|- ( V =/= ( Base ` ndx ) -> ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) ) |
10 |
2
|
1strbas |
|- ( V e. _V -> V = ( Base ` G ) ) |
11 |
1 10
|
mp1i |
|- ( V =/= ( Base ` ndx ) -> V = ( Base ` G ) ) |
12 |
7 9 11
|
3eqtr4d |
|- ( V =/= ( Base ` ndx ) -> ( Vtx ` G ) = V ) |