| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snstrvtxval.v |
|- V e. _V |
| 2 |
|
snstrvtxval.g |
|- G = { <. ( Base ` ndx ) , V >. } |
| 3 |
|
necom |
|- ( V =/= ( Base ` ndx ) <-> ( Base ` ndx ) =/= V ) |
| 4 |
|
fvex |
|- ( Base ` ndx ) e. _V |
| 5 |
4 1 2
|
funsndifnop |
|- ( ( Base ` ndx ) =/= V -> -. G e. ( _V X. _V ) ) |
| 6 |
3 5
|
sylbi |
|- ( V =/= ( Base ` ndx ) -> -. G e. ( _V X. _V ) ) |
| 7 |
6
|
iffalsed |
|- ( V =/= ( Base ` ndx ) -> if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) = ( Base ` G ) ) |
| 8 |
|
vtxval |
|- ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) |
| 9 |
8
|
a1i |
|- ( V =/= ( Base ` ndx ) -> ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) ) |
| 10 |
2
|
1strbas |
|- ( V e. _V -> V = ( Base ` G ) ) |
| 11 |
1 10
|
mp1i |
|- ( V =/= ( Base ` ndx ) -> V = ( Base ` G ) ) |
| 12 |
7 9 11
|
3eqtr4d |
|- ( V =/= ( Base ` ndx ) -> ( Vtx ` G ) = V ) |