| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snstrvtxval.v |  |-  V e. _V | 
						
							| 2 |  | snstrvtxval.g |  |-  G = { <. ( Base ` ndx ) , V >. } | 
						
							| 3 |  | iedgval |  |-  ( iEdg ` G ) = if ( G e. ( _V X. _V ) , ( 2nd ` G ) , ( .ef ` G ) ) | 
						
							| 4 | 3 | a1i |  |-  ( V =/= ( Base ` ndx ) -> ( iEdg ` G ) = if ( G e. ( _V X. _V ) , ( 2nd ` G ) , ( .ef ` G ) ) ) | 
						
							| 5 |  | necom |  |-  ( V =/= ( Base ` ndx ) <-> ( Base ` ndx ) =/= V ) | 
						
							| 6 |  | fvex |  |-  ( Base ` ndx ) e. _V | 
						
							| 7 | 6 1 2 | funsndifnop |  |-  ( ( Base ` ndx ) =/= V -> -. G e. ( _V X. _V ) ) | 
						
							| 8 | 5 7 | sylbi |  |-  ( V =/= ( Base ` ndx ) -> -. G e. ( _V X. _V ) ) | 
						
							| 9 | 8 | iffalsed |  |-  ( V =/= ( Base ` ndx ) -> if ( G e. ( _V X. _V ) , ( 2nd ` G ) , ( .ef ` G ) ) = ( .ef ` G ) ) | 
						
							| 10 |  | snex |  |-  { <. ( Base ` ndx ) , V >. } e. _V | 
						
							| 11 | 10 | a1i |  |-  ( G = { <. ( Base ` ndx ) , V >. } -> { <. ( Base ` ndx ) , V >. } e. _V ) | 
						
							| 12 | 2 11 | eqeltrid |  |-  ( G = { <. ( Base ` ndx ) , V >. } -> G e. _V ) | 
						
							| 13 |  | edgfndxid |  |-  ( G e. _V -> ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) ) | 
						
							| 14 | 2 12 13 | mp2b |  |-  ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) | 
						
							| 15 |  | basendxnedgfndx |  |-  ( Base ` ndx ) =/= ( .ef ` ndx ) | 
						
							| 16 | 15 | nesymi |  |-  -. ( .ef ` ndx ) = ( Base ` ndx ) | 
						
							| 17 | 16 | a1i |  |-  ( V =/= ( Base ` ndx ) -> -. ( .ef ` ndx ) = ( Base ` ndx ) ) | 
						
							| 18 |  | fvex |  |-  ( .ef ` ndx ) e. _V | 
						
							| 19 | 18 | elsn |  |-  ( ( .ef ` ndx ) e. { ( Base ` ndx ) } <-> ( .ef ` ndx ) = ( Base ` ndx ) ) | 
						
							| 20 | 17 19 | sylnibr |  |-  ( V =/= ( Base ` ndx ) -> -. ( .ef ` ndx ) e. { ( Base ` ndx ) } ) | 
						
							| 21 | 2 | dmeqi |  |-  dom G = dom { <. ( Base ` ndx ) , V >. } | 
						
							| 22 |  | dmsnopg |  |-  ( V e. _V -> dom { <. ( Base ` ndx ) , V >. } = { ( Base ` ndx ) } ) | 
						
							| 23 | 1 22 | mp1i |  |-  ( V =/= ( Base ` ndx ) -> dom { <. ( Base ` ndx ) , V >. } = { ( Base ` ndx ) } ) | 
						
							| 24 | 21 23 | eqtrid |  |-  ( V =/= ( Base ` ndx ) -> dom G = { ( Base ` ndx ) } ) | 
						
							| 25 | 20 24 | neleqtrrd |  |-  ( V =/= ( Base ` ndx ) -> -. ( .ef ` ndx ) e. dom G ) | 
						
							| 26 |  | ndmfv |  |-  ( -. ( .ef ` ndx ) e. dom G -> ( G ` ( .ef ` ndx ) ) = (/) ) | 
						
							| 27 | 25 26 | syl |  |-  ( V =/= ( Base ` ndx ) -> ( G ` ( .ef ` ndx ) ) = (/) ) | 
						
							| 28 | 14 27 | eqtrid |  |-  ( V =/= ( Base ` ndx ) -> ( .ef ` G ) = (/) ) | 
						
							| 29 | 4 9 28 | 3eqtrd |  |-  ( V =/= ( Base ` ndx ) -> ( iEdg ` G ) = (/) ) |