Metamath Proof Explorer


Theorem snstriedgval

Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop for the (degenerate) case where V = ( Basendx ) . (Contributed by AV, 24-Sep-2020)

Ref Expression
Hypotheses snstrvtxval.v 𝑉 ∈ V
snstrvtxval.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ }
Assertion snstriedgval ( 𝑉 ≠ ( Base ‘ ndx ) → ( iEdg ‘ 𝐺 ) = ∅ )

Proof

Step Hyp Ref Expression
1 snstrvtxval.v 𝑉 ∈ V
2 snstrvtxval.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ }
3 iedgval ( iEdg ‘ 𝐺 ) = if ( 𝐺 ∈ ( V × V ) , ( 2nd𝐺 ) , ( .ef ‘ 𝐺 ) )
4 3 a1i ( 𝑉 ≠ ( Base ‘ ndx ) → ( iEdg ‘ 𝐺 ) = if ( 𝐺 ∈ ( V × V ) , ( 2nd𝐺 ) , ( .ef ‘ 𝐺 ) ) )
5 necom ( 𝑉 ≠ ( Base ‘ ndx ) ↔ ( Base ‘ ndx ) ≠ 𝑉 )
6 fvex ( Base ‘ ndx ) ∈ V
7 6 1 2 funsndifnop ( ( Base ‘ ndx ) ≠ 𝑉 → ¬ 𝐺 ∈ ( V × V ) )
8 5 7 sylbi ( 𝑉 ≠ ( Base ‘ ndx ) → ¬ 𝐺 ∈ ( V × V ) )
9 8 iffalsed ( 𝑉 ≠ ( Base ‘ ndx ) → if ( 𝐺 ∈ ( V × V ) , ( 2nd𝐺 ) , ( .ef ‘ 𝐺 ) ) = ( .ef ‘ 𝐺 ) )
10 snex { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ } ∈ V
11 10 a1i ( 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ } → { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ } ∈ V )
12 2 11 eqeltrid ( 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ } → 𝐺 ∈ V )
13 edgfndxid ( 𝐺 ∈ V → ( .ef ‘ 𝐺 ) = ( 𝐺 ‘ ( .ef ‘ ndx ) ) )
14 2 12 13 mp2b ( .ef ‘ 𝐺 ) = ( 𝐺 ‘ ( .ef ‘ ndx ) )
15 slotsbaseefdif ( Base ‘ ndx ) ≠ ( .ef ‘ ndx )
16 15 nesymi ¬ ( .ef ‘ ndx ) = ( Base ‘ ndx )
17 16 a1i ( 𝑉 ≠ ( Base ‘ ndx ) → ¬ ( .ef ‘ ndx ) = ( Base ‘ ndx ) )
18 fvex ( .ef ‘ ndx ) ∈ V
19 18 elsn ( ( .ef ‘ ndx ) ∈ { ( Base ‘ ndx ) } ↔ ( .ef ‘ ndx ) = ( Base ‘ ndx ) )
20 17 19 sylnibr ( 𝑉 ≠ ( Base ‘ ndx ) → ¬ ( .ef ‘ ndx ) ∈ { ( Base ‘ ndx ) } )
21 2 dmeqi dom 𝐺 = dom { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ }
22 dmsnopg ( 𝑉 ∈ V → dom { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ } = { ( Base ‘ ndx ) } )
23 1 22 mp1i ( 𝑉 ≠ ( Base ‘ ndx ) → dom { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ } = { ( Base ‘ ndx ) } )
24 21 23 syl5eq ( 𝑉 ≠ ( Base ‘ ndx ) → dom 𝐺 = { ( Base ‘ ndx ) } )
25 20 24 neleqtrrd ( 𝑉 ≠ ( Base ‘ ndx ) → ¬ ( .ef ‘ ndx ) ∈ dom 𝐺 )
26 ndmfv ( ¬ ( .ef ‘ ndx ) ∈ dom 𝐺 → ( 𝐺 ‘ ( .ef ‘ ndx ) ) = ∅ )
27 25 26 syl ( 𝑉 ≠ ( Base ‘ ndx ) → ( 𝐺 ‘ ( .ef ‘ ndx ) ) = ∅ )
28 14 27 syl5eq ( 𝑉 ≠ ( Base ‘ ndx ) → ( .ef ‘ 𝐺 ) = ∅ )
29 4 9 28 3eqtrd ( 𝑉 ≠ ( Base ‘ ndx ) → ( iEdg ‘ 𝐺 ) = ∅ )