| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snstrvtxval.v | ⊢ 𝑉  ∈  V | 
						
							| 2 |  | snstrvtxval.g | ⊢ 𝐺  =  { 〈 ( Base ‘ ndx ) ,  𝑉 〉 } | 
						
							| 3 |  | iedgval | ⊢ ( iEdg ‘ 𝐺 )  =  if ( 𝐺  ∈  ( V  ×  V ) ,  ( 2nd  ‘ 𝐺 ) ,  ( .ef ‘ 𝐺 ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  ( iEdg ‘ 𝐺 )  =  if ( 𝐺  ∈  ( V  ×  V ) ,  ( 2nd  ‘ 𝐺 ) ,  ( .ef ‘ 𝐺 ) ) ) | 
						
							| 5 |  | necom | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  ↔  ( Base ‘ ndx )  ≠  𝑉 ) | 
						
							| 6 |  | fvex | ⊢ ( Base ‘ ndx )  ∈  V | 
						
							| 7 | 6 1 2 | funsndifnop | ⊢ ( ( Base ‘ ndx )  ≠  𝑉  →  ¬  𝐺  ∈  ( V  ×  V ) ) | 
						
							| 8 | 5 7 | sylbi | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  ¬  𝐺  ∈  ( V  ×  V ) ) | 
						
							| 9 | 8 | iffalsed | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  if ( 𝐺  ∈  ( V  ×  V ) ,  ( 2nd  ‘ 𝐺 ) ,  ( .ef ‘ 𝐺 ) )  =  ( .ef ‘ 𝐺 ) ) | 
						
							| 10 |  | snex | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑉 〉 }  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐺  =  { 〈 ( Base ‘ ndx ) ,  𝑉 〉 }  →  { 〈 ( Base ‘ ndx ) ,  𝑉 〉 }  ∈  V ) | 
						
							| 12 | 2 11 | eqeltrid | ⊢ ( 𝐺  =  { 〈 ( Base ‘ ndx ) ,  𝑉 〉 }  →  𝐺  ∈  V ) | 
						
							| 13 |  | edgfndxid | ⊢ ( 𝐺  ∈  V  →  ( .ef ‘ 𝐺 )  =  ( 𝐺 ‘ ( .ef ‘ ndx ) ) ) | 
						
							| 14 | 2 12 13 | mp2b | ⊢ ( .ef ‘ 𝐺 )  =  ( 𝐺 ‘ ( .ef ‘ ndx ) ) | 
						
							| 15 |  | basendxnedgfndx | ⊢ ( Base ‘ ndx )  ≠  ( .ef ‘ ndx ) | 
						
							| 16 | 15 | nesymi | ⊢ ¬  ( .ef ‘ ndx )  =  ( Base ‘ ndx ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  ¬  ( .ef ‘ ndx )  =  ( Base ‘ ndx ) ) | 
						
							| 18 |  | fvex | ⊢ ( .ef ‘ ndx )  ∈  V | 
						
							| 19 | 18 | elsn | ⊢ ( ( .ef ‘ ndx )  ∈  { ( Base ‘ ndx ) }  ↔  ( .ef ‘ ndx )  =  ( Base ‘ ndx ) ) | 
						
							| 20 | 17 19 | sylnibr | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  ¬  ( .ef ‘ ndx )  ∈  { ( Base ‘ ndx ) } ) | 
						
							| 21 | 2 | dmeqi | ⊢ dom  𝐺  =  dom  { 〈 ( Base ‘ ndx ) ,  𝑉 〉 } | 
						
							| 22 |  | dmsnopg | ⊢ ( 𝑉  ∈  V  →  dom  { 〈 ( Base ‘ ndx ) ,  𝑉 〉 }  =  { ( Base ‘ ndx ) } ) | 
						
							| 23 | 1 22 | mp1i | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  dom  { 〈 ( Base ‘ ndx ) ,  𝑉 〉 }  =  { ( Base ‘ ndx ) } ) | 
						
							| 24 | 21 23 | eqtrid | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  dom  𝐺  =  { ( Base ‘ ndx ) } ) | 
						
							| 25 | 20 24 | neleqtrrd | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  ¬  ( .ef ‘ ndx )  ∈  dom  𝐺 ) | 
						
							| 26 |  | ndmfv | ⊢ ( ¬  ( .ef ‘ ndx )  ∈  dom  𝐺  →  ( 𝐺 ‘ ( .ef ‘ ndx ) )  =  ∅ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  ( 𝐺 ‘ ( .ef ‘ ndx ) )  =  ∅ ) | 
						
							| 28 | 14 27 | eqtrid | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  ( .ef ‘ 𝐺 )  =  ∅ ) | 
						
							| 29 | 4 9 28 | 3eqtrd | ⊢ ( 𝑉  ≠  ( Base ‘ ndx )  →  ( iEdg ‘ 𝐺 )  =  ∅ ) |