Step |
Hyp |
Ref |
Expression |
1 |
|
snstrvtxval.v |
⊢ 𝑉 ∈ V |
2 |
|
snstrvtxval.g |
⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝑉 〉 } |
3 |
|
necom |
⊢ ( 𝑉 ≠ ( Base ‘ ndx ) ↔ ( Base ‘ ndx ) ≠ 𝑉 ) |
4 |
|
fvex |
⊢ ( Base ‘ ndx ) ∈ V |
5 |
4 1 2
|
funsndifnop |
⊢ ( ( Base ‘ ndx ) ≠ 𝑉 → ¬ 𝐺 ∈ ( V × V ) ) |
6 |
3 5
|
sylbi |
⊢ ( 𝑉 ≠ ( Base ‘ ndx ) → ¬ 𝐺 ∈ ( V × V ) ) |
7 |
6
|
iffalsed |
⊢ ( 𝑉 ≠ ( Base ‘ ndx ) → if ( 𝐺 ∈ ( V × V ) , ( 1st ‘ 𝐺 ) , ( Base ‘ 𝐺 ) ) = ( Base ‘ 𝐺 ) ) |
8 |
|
vtxval |
⊢ ( Vtx ‘ 𝐺 ) = if ( 𝐺 ∈ ( V × V ) , ( 1st ‘ 𝐺 ) , ( Base ‘ 𝐺 ) ) |
9 |
8
|
a1i |
⊢ ( 𝑉 ≠ ( Base ‘ ndx ) → ( Vtx ‘ 𝐺 ) = if ( 𝐺 ∈ ( V × V ) , ( 1st ‘ 𝐺 ) , ( Base ‘ 𝐺 ) ) ) |
10 |
2
|
1strbas |
⊢ ( 𝑉 ∈ V → 𝑉 = ( Base ‘ 𝐺 ) ) |
11 |
1 10
|
mp1i |
⊢ ( 𝑉 ≠ ( Base ‘ ndx ) → 𝑉 = ( Base ‘ 𝐺 ) ) |
12 |
7 9 11
|
3eqtr4d |
⊢ ( 𝑉 ≠ ( Base ‘ ndx ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |