| Step | Hyp | Ref | Expression | 
						
							| 1 |  | soi.1 |  |-  R Or S | 
						
							| 2 |  | soi.2 |  |-  R C_ ( S X. S ) | 
						
							| 3 | 2 | brel |  |-  ( A R B -> ( A e. S /\ B e. S ) ) | 
						
							| 4 | 3 | simprd |  |-  ( A R B -> B e. S ) | 
						
							| 5 |  | sotric |  |-  ( ( R Or S /\ ( C e. S /\ B e. S ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) | 
						
							| 6 | 1 5 | mpan |  |-  ( ( C e. S /\ B e. S ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) | 
						
							| 7 | 6 | con2bid |  |-  ( ( C e. S /\ B e. S ) -> ( ( C = B \/ B R C ) <-> -. C R B ) ) | 
						
							| 8 |  | breq2 |  |-  ( C = B -> ( A R C <-> A R B ) ) | 
						
							| 9 | 8 | biimprd |  |-  ( C = B -> ( A R B -> A R C ) ) | 
						
							| 10 | 1 2 | sotri |  |-  ( ( A R B /\ B R C ) -> A R C ) | 
						
							| 11 | 10 | expcom |  |-  ( B R C -> ( A R B -> A R C ) ) | 
						
							| 12 | 9 11 | jaoi |  |-  ( ( C = B \/ B R C ) -> ( A R B -> A R C ) ) | 
						
							| 13 | 7 12 | biimtrrdi |  |-  ( ( C e. S /\ B e. S ) -> ( -. C R B -> ( A R B -> A R C ) ) ) | 
						
							| 14 | 13 | com3r |  |-  ( A R B -> ( ( C e. S /\ B e. S ) -> ( -. C R B -> A R C ) ) ) | 
						
							| 15 | 4 14 | mpan2d |  |-  ( A R B -> ( C e. S -> ( -. C R B -> A R C ) ) ) | 
						
							| 16 | 15 | 3imp21 |  |-  ( ( C e. S /\ A R B /\ -. C R B ) -> A R C ) |