Metamath Proof Explorer


Theorem sotri3

Description: A transitivity relation. (Read A < B and B <_ C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses soi.1 ROrS
soi.2 RS×S
Assertion sotri3 CSARB¬CRBARC

Proof

Step Hyp Ref Expression
1 soi.1 ROrS
2 soi.2 RS×S
3 2 brel ARBASBS
4 3 simprd ARBBS
5 sotric ROrSCSBSCRB¬C=BBRC
6 1 5 mpan CSBSCRB¬C=BBRC
7 6 con2bid CSBSC=BBRC¬CRB
8 breq2 C=BARCARB
9 8 biimprd C=BARBARC
10 1 2 sotri ARBBRCARC
11 10 expcom BRCARBARC
12 9 11 jaoi C=BBRCARBARC
13 7 12 syl6bir CSBS¬CRBARBARC
14 13 com3r ARBCSBS¬CRBARC
15 4 14 mpan2d ARBCS¬CRBARC
16 15 3imp21 CSARB¬CRBARC