Metamath Proof Explorer


Theorem span0

Description: The span of the empty set is the zero subspace. Remark 11.6.e of Schechter p. 276. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion span0
|- ( span ` (/) ) = 0H

Proof

Step Hyp Ref Expression
1 h0elsh
 |-  0H e. SH
2 1 shssii
 |-  0H C_ ~H
3 0ss
 |-  (/) C_ 0H
4 spanss
 |-  ( ( 0H C_ ~H /\ (/) C_ 0H ) -> ( span ` (/) ) C_ ( span ` 0H ) )
5 2 3 4 mp2an
 |-  ( span ` (/) ) C_ ( span ` 0H )
6 spanid
 |-  ( 0H e. SH -> ( span ` 0H ) = 0H )
7 1 6 ax-mp
 |-  ( span ` 0H ) = 0H
8 5 7 sseqtri
 |-  ( span ` (/) ) C_ 0H
9 0ss
 |-  (/) C_ ~H
10 spancl
 |-  ( (/) C_ ~H -> ( span ` (/) ) e. SH )
11 9 10 ax-mp
 |-  ( span ` (/) ) e. SH
12 sh0le
 |-  ( ( span ` (/) ) e. SH -> 0H C_ ( span ` (/) ) )
13 11 12 ax-mp
 |-  0H C_ ( span ` (/) )
14 8 13 eqssi
 |-  ( span ` (/) ) = 0H