Step |
Hyp |
Ref |
Expression |
1 |
|
h0elsh |
⊢ 0ℋ ∈ Sℋ |
2 |
1
|
shssii |
⊢ 0ℋ ⊆ ℋ |
3 |
|
0ss |
⊢ ∅ ⊆ 0ℋ |
4 |
|
spanss |
⊢ ( ( 0ℋ ⊆ ℋ ∧ ∅ ⊆ 0ℋ ) → ( span ‘ ∅ ) ⊆ ( span ‘ 0ℋ ) ) |
5 |
2 3 4
|
mp2an |
⊢ ( span ‘ ∅ ) ⊆ ( span ‘ 0ℋ ) |
6 |
|
spanid |
⊢ ( 0ℋ ∈ Sℋ → ( span ‘ 0ℋ ) = 0ℋ ) |
7 |
1 6
|
ax-mp |
⊢ ( span ‘ 0ℋ ) = 0ℋ |
8 |
5 7
|
sseqtri |
⊢ ( span ‘ ∅ ) ⊆ 0ℋ |
9 |
|
0ss |
⊢ ∅ ⊆ ℋ |
10 |
|
spancl |
⊢ ( ∅ ⊆ ℋ → ( span ‘ ∅ ) ∈ Sℋ ) |
11 |
9 10
|
ax-mp |
⊢ ( span ‘ ∅ ) ∈ Sℋ |
12 |
|
sh0le |
⊢ ( ( span ‘ ∅ ) ∈ Sℋ → 0ℋ ⊆ ( span ‘ ∅ ) ) |
13 |
11 12
|
ax-mp |
⊢ 0ℋ ⊆ ( span ‘ ∅ ) |
14 |
8 13
|
eqssi |
⊢ ( span ‘ ∅ ) = 0ℋ |