Description: Membership relation implied by equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansneleqi | |- ( A e. ~H -> ( ( span ` { A } ) = ( span ` { B } ) -> A e. ( span ` { B } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnid | |- ( A e. ~H -> A e. ( span ` { A } ) ) |
|
| 2 | eleq2 | |- ( ( span ` { A } ) = ( span ` { B } ) -> ( A e. ( span ` { A } ) <-> A e. ( span ` { B } ) ) ) |
|
| 3 | 1 2 | syl5ibcom | |- ( A e. ~H -> ( ( span ` { A } ) = ( span ` { B } ) -> A e. ( span ` { B } ) ) ) |