Metamath Proof Explorer


Theorem spansneleqi

Description: Membership relation implied by equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spansneleqi AspanA=spanBAspanB

Proof

Step Hyp Ref Expression
1 spansnid AAspanA
2 eleq2 spanA=spanBAspanAAspanB
3 1 2 syl5ibcom AspanA=spanBAspanB