Metamath Proof Explorer


Theorem spr0el

Description: The empty set is not an unordered pair over any set V . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion spr0el
|- (/) e/ ( Pairs ` V )

Proof

Step Hyp Ref Expression
1 spr0nelg
 |-  (/) e/ { p | E. a E. b p = { a , b } }
2 sprssspr
 |-  ( Pairs ` V ) C_ { p | E. a E. b p = { a , b } }
3 2 sseli
 |-  ( (/) e. ( Pairs ` V ) -> (/) e. { p | E. a E. b p = { a , b } } )
4 3 con3i
 |-  ( -. (/) e. { p | E. a E. b p = { a , b } } -> -. (/) e. ( Pairs ` V ) )
5 df-nel
 |-  ( (/) e/ { p | E. a E. b p = { a , b } } <-> -. (/) e. { p | E. a E. b p = { a , b } } )
6 df-nel
 |-  ( (/) e/ ( Pairs ` V ) <-> -. (/) e. ( Pairs ` V ) )
7 4 5 6 3imtr4i
 |-  ( (/) e/ { p | E. a E. b p = { a , b } } -> (/) e/ ( Pairs ` V ) )
8 1 7 ax-mp
 |-  (/) e/ ( Pairs ` V )