Metamath Proof Explorer


Theorem spr0el

Description: The empty set is not an unordered pair over any set V . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion spr0el PairsV

Proof

Step Hyp Ref Expression
1 spr0nelg p|abp=ab
2 sprssspr PairsVp|abp=ab
3 2 sseli PairsVp|abp=ab
4 3 con3i ¬p|abp=ab¬PairsV
5 df-nel p|abp=ab¬p|abp=ab
6 df-nel PairsV¬PairsV
7 4 5 6 3imtr4i p|abp=abPairsV
8 1 7 ax-mp PairsV