Metamath Proof Explorer


Theorem spr0el

Description: The empty set is not an unordered pair over any set V . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion spr0el Pairs V

Proof

Step Hyp Ref Expression
1 spr0nelg p | a b p = a b
2 sprssspr Pairs V p | a b p = a b
3 2 sseli Pairs V p | a b p = a b
4 3 con3i ¬ p | a b p = a b ¬ Pairs V
5 df-nel p | a b p = a b ¬ p | a b p = a b
6 df-nel Pairs V ¬ Pairs V
7 4 5 6 3imtr4i p | a b p = a b Pairs V
8 1 7 ax-mp Pairs V