Metamath Proof Explorer


Theorem sprssspr

Description: The set of all unordered pairs over a given set V is a subset of the set of all unordered pairs. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion sprssspr Pairs V p | a b p = a b

Proof

Step Hyp Ref Expression
1 sprval V V Pairs V = p | a V b V p = a b
2 r2ex a V b V p = a b a b a V b V p = a b
3 simpr a V b V p = a b p = a b
4 3 2eximi a b a V b V p = a b a b p = a b
5 2 4 sylbi a V b V p = a b a b p = a b
6 5 ax-gen p a V b V p = a b a b p = a b
7 6 a1i V V p a V b V p = a b a b p = a b
8 ss2ab p | a V b V p = a b p | a b p = a b p a V b V p = a b a b p = a b
9 7 8 sylibr V V p | a V b V p = a b p | a b p = a b
10 1 9 eqsstrd V V Pairs V p | a b p = a b
11 fvprc ¬ V V Pairs V =
12 0ss p | a b p = a b
13 12 a1i ¬ V V p | a b p = a b
14 11 13 eqsstrd ¬ V V Pairs V p | a b p = a b
15 10 14 pm2.61i Pairs V p | a b p = a b