| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spr0nelg |
⊢ ∅ ∉ { 𝑝 ∣ ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } } |
| 2 |
|
sprssspr |
⊢ ( Pairs ‘ 𝑉 ) ⊆ { 𝑝 ∣ ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } } |
| 3 |
2
|
sseli |
⊢ ( ∅ ∈ ( Pairs ‘ 𝑉 ) → ∅ ∈ { 𝑝 ∣ ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } } ) |
| 4 |
3
|
con3i |
⊢ ( ¬ ∅ ∈ { 𝑝 ∣ ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } } → ¬ ∅ ∈ ( Pairs ‘ 𝑉 ) ) |
| 5 |
|
df-nel |
⊢ ( ∅ ∉ { 𝑝 ∣ ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } } ↔ ¬ ∅ ∈ { 𝑝 ∣ ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } } ) |
| 6 |
|
df-nel |
⊢ ( ∅ ∉ ( Pairs ‘ 𝑉 ) ↔ ¬ ∅ ∈ ( Pairs ‘ 𝑉 ) ) |
| 7 |
4 5 6
|
3imtr4i |
⊢ ( ∅ ∉ { 𝑝 ∣ ∃ 𝑎 ∃ 𝑏 𝑝 = { 𝑎 , 𝑏 } } → ∅ ∉ ( Pairs ‘ 𝑉 ) ) |
| 8 |
1 7
|
ax-mp |
⊢ ∅ ∉ ( Pairs ‘ 𝑉 ) |