Metamath Proof Explorer


Theorem spr0el

Description: The empty set is not an unordered pair over any set V . (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion spr0el ∅ ∉ ( Pairs ‘ 𝑉 )

Proof

Step Hyp Ref Expression
1 spr0nelg ∅ ∉ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } }
2 sprssspr ( Pairs ‘ 𝑉 ) ⊆ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } }
3 2 sseli ( ∅ ∈ ( Pairs ‘ 𝑉 ) → ∅ ∈ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } } )
4 3 con3i ( ¬ ∅ ∈ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } } → ¬ ∅ ∈ ( Pairs ‘ 𝑉 ) )
5 df-nel ( ∅ ∉ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } } ↔ ¬ ∅ ∈ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } } )
6 df-nel ( ∅ ∉ ( Pairs ‘ 𝑉 ) ↔ ¬ ∅ ∈ ( Pairs ‘ 𝑉 ) )
7 4 5 6 3imtr4i ( ∅ ∉ { 𝑝 ∣ ∃ 𝑎𝑏 𝑝 = { 𝑎 , 𝑏 } } → ∅ ∉ ( Pairs ‘ 𝑉 ) )
8 1 7 ax-mp ∅ ∉ ( Pairs ‘ 𝑉 )