Metamath Proof Explorer


Theorem sprvalpwn0

Description: The set of all unordered pairs over a given set V , expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021)

Ref Expression
Assertion sprvalpwn0 ( 𝑉𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )

Proof

Step Hyp Ref Expression
1 sprvalpw ( 𝑉𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )
2 id ( 𝑝 = { 𝑎 , 𝑏 } → 𝑝 = { 𝑎 , 𝑏 } )
3 vex 𝑎 ∈ V
4 3 prnz { 𝑎 , 𝑏 } ≠ ∅
5 4 a1i ( 𝑝 = { 𝑎 , 𝑏 } → { 𝑎 , 𝑏 } ≠ ∅ )
6 2 5 eqnetrd ( 𝑝 = { 𝑎 , 𝑏 } → 𝑝 ≠ ∅ )
7 6 a1i ( ( 𝑎𝑉𝑏𝑉 ) → ( 𝑝 = { 𝑎 , 𝑏 } → 𝑝 ≠ ∅ ) )
8 7 rexlimivv ( ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } → 𝑝 ≠ ∅ )
9 8 adantl ( ( 𝑝 ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) → 𝑝 ≠ ∅ )
10 9 pm4.71ri ( ( 𝑝 ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) ↔ ( 𝑝 ≠ ∅ ∧ ( 𝑝 ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) ) )
11 ancom ( ( 𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉 ) ↔ ( 𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅ ) )
12 11 anbi1i ( ( ( 𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉 ) ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) ↔ ( ( 𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅ ) ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) )
13 anass ( ( ( 𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉 ) ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) ↔ ( 𝑝 ≠ ∅ ∧ ( 𝑝 ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) ) )
14 eldifsn ( 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( 𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅ ) )
15 14 bicomi ( ( 𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅ ) ↔ 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) )
16 15 anbi1i ( ( ( 𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅ ) ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) ↔ ( 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) )
17 12 13 16 3bitr3i ( ( 𝑝 ≠ ∅ ∧ ( 𝑝 ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) ) ↔ ( 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) )
18 10 17 bitri ( ( 𝑝 ∈ 𝒫 𝑉 ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) ↔ ( 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∧ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } ) )
19 18 rabbia2 { 𝑝 ∈ 𝒫 𝑉 ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } }
20 1 19 eqtrdi ( 𝑉𝑊 → ( Pairs ‘ 𝑉 ) = { 𝑝 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ∃ 𝑎𝑉𝑏𝑉 𝑝 = { 𝑎 , 𝑏 } } )