Metamath Proof Explorer


Theorem spsbeOLD

Description: Obsolete version of spsbe as of 11-Jul-2023. (Contributed by NM, 29-Jun-1993) (Proof shortened by Wolf Lammen, 3-May-2018) Revise df-sb . (Revised by BJ, 22-Dec-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion spsbeOLD
|- ( [ t / x ] ph -> E. x ph )

Proof

Step Hyp Ref Expression
1 df-sb
 |-  ( [ t / x ] ph <-> A. y ( y = t -> A. x ( x = y -> ph ) ) )
2 ax6ev
 |-  E. y y = t
3 exim
 |-  ( A. y ( y = t -> A. x ( x = y -> ph ) ) -> ( E. y y = t -> E. y A. x ( x = y -> ph ) ) )
4 2 3 mpi
 |-  ( A. y ( y = t -> A. x ( x = y -> ph ) ) -> E. y A. x ( x = y -> ph ) )
5 1 4 sylbi
 |-  ( [ t / x ] ph -> E. y A. x ( x = y -> ph ) )
6 exim
 |-  ( A. x ( x = y -> ph ) -> ( E. x x = y -> E. x ph ) )
7 6 eximi
 |-  ( E. y A. x ( x = y -> ph ) -> E. y ( E. x x = y -> E. x ph ) )
8 ax6ev
 |-  E. x x = y
9 pm2.27
 |-  ( E. x x = y -> ( ( E. x x = y -> E. x ph ) -> E. x ph ) )
10 8 9 ax-mp
 |-  ( ( E. x x = y -> E. x ph ) -> E. x ph )
11 10 exlimiv
 |-  ( E. y ( E. x x = y -> E. x ph ) -> E. x ph )
12 5 7 11 3syl
 |-  ( [ t / x ] ph -> E. x ph )