| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 2 |
1
|
eqcomi |
|- 4 = ( 2 x. 2 ) |
| 3 |
2
|
oveq1i |
|- ( 4 ^ 2 ) = ( ( 2 x. 2 ) ^ 2 ) |
| 4 |
|
2cn |
|- 2 e. CC |
| 5 |
4 4
|
sqmuli |
|- ( ( 2 x. 2 ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) |
| 6 |
4
|
sqvali |
|- ( 2 ^ 2 ) = ( 2 x. 2 ) |
| 7 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 8 |
6 7
|
oveq12i |
|- ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) = ( ( 2 x. 2 ) x. 4 ) |
| 9 |
|
4cn |
|- 4 e. CC |
| 10 |
4 4 9
|
mulassi |
|- ( ( 2 x. 2 ) x. 4 ) = ( 2 x. ( 2 x. 4 ) ) |
| 11 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
| 12 |
9 4 11
|
mulcomli |
|- ( 2 x. 4 ) = 8 |
| 13 |
12
|
oveq2i |
|- ( 2 x. ( 2 x. 4 ) ) = ( 2 x. 8 ) |
| 14 |
8 10 13
|
3eqtri |
|- ( ( 2 ^ 2 ) x. ( 2 ^ 2 ) ) = ( 2 x. 8 ) |
| 15 |
3 5 14
|
3eqtri |
|- ( 4 ^ 2 ) = ( 2 x. 8 ) |