Metamath Proof Explorer


Theorem sqrt9

Description: The square root of 9 is 3. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion sqrt9
|- ( sqrt ` 9 ) = 3

Proof

Step Hyp Ref Expression
1 sq3
 |-  ( 3 ^ 2 ) = 9
2 1 fveq2i
 |-  ( sqrt ` ( 3 ^ 2 ) ) = ( sqrt ` 9 )
3 3re
 |-  3 e. RR
4 0re
 |-  0 e. RR
5 3pos
 |-  0 < 3
6 4 3 5 ltleii
 |-  0 <_ 3
7 sqrtsq
 |-  ( ( 3 e. RR /\ 0 <_ 3 ) -> ( sqrt ` ( 3 ^ 2 ) ) = 3 )
8 3 6 7 mp2an
 |-  ( sqrt ` ( 3 ^ 2 ) ) = 3
9 2 8 eqtr3i
 |-  ( sqrt ` 9 ) = 3