Metamath Proof Explorer


Theorem srgbinomlem2

Description: Lemma 2 for srgbinomlem . (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgbinom.s
|- S = ( Base ` R )
srgbinom.m
|- .X. = ( .r ` R )
srgbinom.t
|- .x. = ( .g ` R )
srgbinom.a
|- .+ = ( +g ` R )
srgbinom.g
|- G = ( mulGrp ` R )
srgbinom.e
|- .^ = ( .g ` G )
srgbinomlem.r
|- ( ph -> R e. SRing )
srgbinomlem.a
|- ( ph -> A e. S )
srgbinomlem.b
|- ( ph -> B e. S )
srgbinomlem.c
|- ( ph -> ( A .X. B ) = ( B .X. A ) )
srgbinomlem.n
|- ( ph -> N e. NN0 )
Assertion srgbinomlem2
|- ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> ( C .x. ( ( D .^ A ) .X. ( E .^ B ) ) ) e. S )

Proof

Step Hyp Ref Expression
1 srgbinom.s
 |-  S = ( Base ` R )
2 srgbinom.m
 |-  .X. = ( .r ` R )
3 srgbinom.t
 |-  .x. = ( .g ` R )
4 srgbinom.a
 |-  .+ = ( +g ` R )
5 srgbinom.g
 |-  G = ( mulGrp ` R )
6 srgbinom.e
 |-  .^ = ( .g ` G )
7 srgbinomlem.r
 |-  ( ph -> R e. SRing )
8 srgbinomlem.a
 |-  ( ph -> A e. S )
9 srgbinomlem.b
 |-  ( ph -> B e. S )
10 srgbinomlem.c
 |-  ( ph -> ( A .X. B ) = ( B .X. A ) )
11 srgbinomlem.n
 |-  ( ph -> N e. NN0 )
12 srgmnd
 |-  ( R e. SRing -> R e. Mnd )
13 7 12 syl
 |-  ( ph -> R e. Mnd )
14 13 adantr
 |-  ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> R e. Mnd )
15 simpr1
 |-  ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> C e. NN0 )
16 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem1
 |-  ( ( ph /\ ( D e. NN0 /\ E e. NN0 ) ) -> ( ( D .^ A ) .X. ( E .^ B ) ) e. S )
17 16 3adantr1
 |-  ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> ( ( D .^ A ) .X. ( E .^ B ) ) e. S )
18 1 3 mulgnn0cl
 |-  ( ( R e. Mnd /\ C e. NN0 /\ ( ( D .^ A ) .X. ( E .^ B ) ) e. S ) -> ( C .x. ( ( D .^ A ) .X. ( E .^ B ) ) ) e. S )
19 14 15 17 18 syl3anc
 |-  ( ( ph /\ ( C e. NN0 /\ D e. NN0 /\ E e. NN0 ) ) -> ( C .x. ( ( D .^ A ) .X. ( E .^ B ) ) ) e. S )