Description: Lemma 2 for srgbinomlem . (Contributed by AV, 23-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srgbinom.s | |
|
srgbinom.m | |
||
srgbinom.t | |
||
srgbinom.a | |
||
srgbinom.g | |
||
srgbinom.e | |
||
srgbinomlem.r | |
||
srgbinomlem.a | |
||
srgbinomlem.b | |
||
srgbinomlem.c | |
||
srgbinomlem.n | |
||
Assertion | srgbinomlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgbinom.s | |
|
2 | srgbinom.m | |
|
3 | srgbinom.t | |
|
4 | srgbinom.a | |
|
5 | srgbinom.g | |
|
6 | srgbinom.e | |
|
7 | srgbinomlem.r | |
|
8 | srgbinomlem.a | |
|
9 | srgbinomlem.b | |
|
10 | srgbinomlem.c | |
|
11 | srgbinomlem.n | |
|
12 | srgmnd | |
|
13 | 7 12 | syl | |
14 | 13 | adantr | |
15 | simpr1 | |
|
16 | 1 2 3 4 5 6 7 8 9 10 11 | srgbinomlem1 | |
17 | 16 | 3adantr1 | |
18 | 1 3 14 15 17 | mulgnn0cld | |