Metamath Proof Explorer


Theorem srgbinomlem2

Description: Lemma 2 for srgbinomlem . (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgbinom.s S=BaseR
srgbinom.m ×˙=R
srgbinom.t ·˙=R
srgbinom.a +˙=+R
srgbinom.g G=mulGrpR
srgbinom.e ×˙=G
srgbinomlem.r φRSRing
srgbinomlem.a φAS
srgbinomlem.b φBS
srgbinomlem.c φA×˙B=B×˙A
srgbinomlem.n φN0
Assertion srgbinomlem2 φC0D0E0C·˙D×˙A×˙E×˙BS

Proof

Step Hyp Ref Expression
1 srgbinom.s S=BaseR
2 srgbinom.m ×˙=R
3 srgbinom.t ·˙=R
4 srgbinom.a +˙=+R
5 srgbinom.g G=mulGrpR
6 srgbinom.e ×˙=G
7 srgbinomlem.r φRSRing
8 srgbinomlem.a φAS
9 srgbinomlem.b φBS
10 srgbinomlem.c φA×˙B=B×˙A
11 srgbinomlem.n φN0
12 srgmnd RSRingRMnd
13 7 12 syl φRMnd
14 13 adantr φC0D0E0RMnd
15 simpr1 φC0D0E0C0
16 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem1 φD0E0D×˙A×˙E×˙BS
17 16 3adantr1 φC0D0E0D×˙A×˙E×˙BS
18 1 3 14 15 17 mulgnn0cld φC0D0E0C·˙D×˙A×˙E×˙BS