Metamath Proof Explorer


Theorem srgbinomlem1

Description: Lemma 1 for srgbinomlem . (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgbinom.s S=BaseR
srgbinom.m ×˙=R
srgbinom.t ·˙=R
srgbinom.a +˙=+R
srgbinom.g G=mulGrpR
srgbinom.e ×˙=G
srgbinomlem.r φRSRing
srgbinomlem.a φAS
srgbinomlem.b φBS
srgbinomlem.c φA×˙B=B×˙A
srgbinomlem.n φN0
Assertion srgbinomlem1 φD0E0D×˙A×˙E×˙BS

Proof

Step Hyp Ref Expression
1 srgbinom.s S=BaseR
2 srgbinom.m ×˙=R
3 srgbinom.t ·˙=R
4 srgbinom.a +˙=+R
5 srgbinom.g G=mulGrpR
6 srgbinom.e ×˙=G
7 srgbinomlem.r φRSRing
8 srgbinomlem.a φAS
9 srgbinomlem.b φBS
10 srgbinomlem.c φA×˙B=B×˙A
11 srgbinomlem.n φN0
12 7 adantr φD0E0RSRing
13 5 1 mgpbas S=BaseG
14 5 srgmgp RSRingGMnd
15 7 14 syl φGMnd
16 15 adantr φD0E0GMnd
17 simprl φD0E0D0
18 8 adantr φD0E0AS
19 13 6 16 17 18 mulgnn0cld φD0E0D×˙AS
20 simprr φD0E0E0
21 9 adantr φD0E0BS
22 13 6 16 20 21 mulgnn0cld φD0E0E×˙BS
23 1 2 srgcl RSRingD×˙ASE×˙BSD×˙A×˙E×˙BS
24 12 19 22 23 syl3anc φD0E0D×˙A×˙E×˙BS