Metamath Proof Explorer


Theorem srgcl

Description: Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgcl.b B=BaseR
srgcl.t ·˙=R
Assertion srgcl RSRingXBYBX·˙YB

Proof

Step Hyp Ref Expression
1 srgcl.b B=BaseR
2 srgcl.t ·˙=R
3 eqid mulGrpR=mulGrpR
4 3 srgmgp RSRingmulGrpRMnd
5 3 1 mgpbas B=BasemulGrpR
6 3 2 mgpplusg ·˙=+mulGrpR
7 5 6 mndcl mulGrpRMndXBYBX·˙YB
8 4 7 syl3an1 RSRingXBYBX·˙YB