Metamath Proof Explorer


Theorem srgass

Description: Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgcl.b B=BaseR
srgcl.t ·˙=R
Assertion srgass RSRingXBYBZBX·˙Y·˙Z=X·˙Y·˙Z

Proof

Step Hyp Ref Expression
1 srgcl.b B=BaseR
2 srgcl.t ·˙=R
3 eqid mulGrpR=mulGrpR
4 3 srgmgp RSRingmulGrpRMnd
5 3 1 mgpbas B=BasemulGrpR
6 3 2 mgpplusg ·˙=+mulGrpR
7 5 6 mndass mulGrpRMndXBYBZBX·˙Y·˙Z=X·˙Y·˙Z
8 4 7 sylan RSRingXBYBZBX·˙Y·˙Z=X·˙Y·˙Z