| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srgbinom.s |
|
| 2 |
|
srgbinom.m |
|
| 3 |
|
srgbinom.t |
|
| 4 |
|
srgbinom.a |
|
| 5 |
|
srgbinom.g |
|
| 6 |
|
srgbinom.e |
|
| 7 |
|
srgbinomlem.r |
|
| 8 |
|
srgbinomlem.a |
|
| 9 |
|
srgbinomlem.b |
|
| 10 |
|
srgbinomlem.c |
|
| 11 |
|
srgbinomlem.n |
|
| 12 |
|
srgbinomlem.i |
|
| 13 |
12
|
adantl |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
srgcmn |
|
| 16 |
7 15
|
syl |
|
| 17 |
|
simpl |
|
| 18 |
|
elfzelz |
|
| 19 |
|
bccl |
|
| 20 |
11 18 19
|
syl2an |
|
| 21 |
|
fznn0sub |
|
| 22 |
21
|
adantl |
|
| 23 |
|
elfznn0 |
|
| 24 |
23
|
adantl |
|
| 25 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem2 |
|
| 26 |
17 20 22 24 25
|
syl13anc |
|
| 27 |
1 4 16 11 26
|
gsummptfzsplit |
|
| 28 |
|
srgmnd |
|
| 29 |
7 28
|
syl |
|
| 30 |
|
ovexd |
|
| 31 |
|
id |
|
| 32 |
11
|
nn0zd |
|
| 33 |
32
|
peano2zd |
|
| 34 |
|
bccl |
|
| 35 |
11 33 34
|
syl2anc |
|
| 36 |
11
|
nn0cnd |
|
| 37 |
|
peano2cn |
|
| 38 |
36 37
|
syl |
|
| 39 |
38
|
subidd |
|
| 40 |
|
0nn0 |
|
| 41 |
39 40
|
eqeltrdi |
|
| 42 |
|
peano2nn0 |
|
| 43 |
11 42
|
syl |
|
| 44 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem2 |
|
| 45 |
31 35 41 43 44
|
syl13anc |
|
| 46 |
|
oveq2 |
|
| 47 |
|
oveq2 |
|
| 48 |
47
|
oveq1d |
|
| 49 |
|
oveq1 |
|
| 50 |
48 49
|
oveq12d |
|
| 51 |
46 50
|
oveq12d |
|
| 52 |
1 51
|
gsumsn |
|
| 53 |
29 30 45 52
|
syl3anc |
|
| 54 |
11
|
nn0red |
|
| 55 |
54
|
ltp1d |
|
| 56 |
55
|
olcd |
|
| 57 |
|
bcval4 |
|
| 58 |
11 33 56 57
|
syl3anc |
|
| 59 |
58
|
oveq1d |
|
| 60 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem1 |
|
| 61 |
31 41 43 60
|
syl12anc |
|
| 62 |
|
eqid |
|
| 63 |
1 62 3
|
mulg0 |
|
| 64 |
61 63
|
syl |
|
| 65 |
53 59 64
|
3eqtrd |
|
| 66 |
65
|
oveq2d |
|
| 67 |
|
fzfid |
|
| 68 |
|
simpl |
|
| 69 |
|
bccl2 |
|
| 70 |
69
|
nnnn0d |
|
| 71 |
70
|
adantl |
|
| 72 |
|
fzelp1 |
|
| 73 |
72 22
|
sylan2 |
|
| 74 |
|
elfznn0 |
|
| 75 |
74
|
adantl |
|
| 76 |
68 71 73 75 25
|
syl13anc |
|
| 77 |
76
|
ralrimiva |
|
| 78 |
1 16 67 77
|
gsummptcl |
|
| 79 |
1 4 62
|
mndrid |
|
| 80 |
29 78 79
|
syl2anc |
|
| 81 |
27 66 80
|
3eqtrd |
|
| 82 |
7
|
adantr |
|
| 83 |
8
|
adantr |
|
| 84 |
9
|
adantr |
|
| 85 |
10
|
adantr |
|
| 86 |
|
fznn0sub |
|
| 87 |
86
|
adantl |
|
| 88 |
1 2 5 6 82 83 84 75 85 87 3 71
|
srgpcomppsc |
|
| 89 |
36
|
adantr |
|
| 90 |
|
1cnd |
|
| 91 |
|
elfzelz |
|
| 92 |
91
|
zcnd |
|
| 93 |
92
|
adantl |
|
| 94 |
89 90 93
|
addsubd |
|
| 95 |
94
|
oveq1d |
|
| 96 |
95
|
oveq1d |
|
| 97 |
96
|
oveq2d |
|
| 98 |
88 97
|
eqtr4d |
|
| 99 |
98
|
mpteq2dva |
|
| 100 |
99
|
oveq2d |
|
| 101 |
|
ovexd |
|
| 102 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem2 |
|
| 103 |
68 71 87 75 102
|
syl13anc |
|
| 104 |
|
eqid |
|
| 105 |
|
ovexd |
|
| 106 |
|
fvexd |
|
| 107 |
104 67 105 106
|
fsuppmptdm |
|
| 108 |
1 62 4 2 7 101 8 103 107
|
srgsummulcr |
|
| 109 |
81 100 108
|
3eqtr2rd |
|
| 110 |
109
|
adantr |
|
| 111 |
14 110
|
eqtrd |
|