Metamath Proof Explorer


Theorem srgbinomlem4

Description: Lemma 4 for srgbinomlem . (Contributed by AV, 24-Aug-2019) (Proof shortened by AV, 19-Nov-2019)

Ref Expression
Hypotheses srgbinom.s S=BaseR
srgbinom.m ×˙=R
srgbinom.t ·˙=R
srgbinom.a +˙=+R
srgbinom.g G=mulGrpR
srgbinom.e ×˙=G
srgbinomlem.r φRSRing
srgbinomlem.a φAS
srgbinomlem.b φBS
srgbinomlem.c φA×˙B=B×˙A
srgbinomlem.n φN0
srgbinomlem.i ψN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
Assertion srgbinomlem4 φψN×˙A+˙B×˙B=Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B

Proof

Step Hyp Ref Expression
1 srgbinom.s S=BaseR
2 srgbinom.m ×˙=R
3 srgbinom.t ·˙=R
4 srgbinom.a +˙=+R
5 srgbinom.g G=mulGrpR
6 srgbinom.e ×˙=G
7 srgbinomlem.r φRSRing
8 srgbinomlem.a φAS
9 srgbinomlem.b φBS
10 srgbinomlem.c φA×˙B=B×˙A
11 srgbinomlem.n φN0
12 srgbinomlem.i ψN×˙A+˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B
13 12 oveq1d ψN×˙A+˙B×˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙B
14 eqid 0R=0R
15 ovexd φ0NV
16 simpl φk0Nφ
17 elfzelz k0Nk
18 bccl N0k(Nk)0
19 11 17 18 syl2an φk0N(Nk)0
20 fznn0sub k0NNk0
21 20 adantl φk0NNk0
22 elfznn0 k0Nk0
23 22 adantl φk0Nk0
24 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem2 φ(Nk)0Nk0k0(Nk)·˙Nk×˙A×˙k×˙BS
25 16 19 21 23 24 syl13anc φk0N(Nk)·˙Nk×˙A×˙k×˙BS
26 eqid k0N(Nk)·˙Nk×˙A×˙k×˙B=k0N(Nk)·˙Nk×˙A×˙k×˙B
27 fzfid φ0NFin
28 ovexd φk0N(Nk)·˙Nk×˙A×˙k×˙BV
29 fvexd φ0RV
30 26 27 28 29 fsuppmptdm φfinSupp0Rk0N(Nk)·˙Nk×˙A×˙k×˙B
31 1 14 4 2 7 15 9 25 30 srgsummulcr φRk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙B=Rk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙B
32 srgcmn RSRingRCMnd
33 7 32 syl φRCMnd
34 1z 1
35 34 a1i φ1
36 0zd φ0
37 11 nn0zd φN
38 7 adantr φk0NRSRing
39 9 adantr φk0NBS
40 1 2 srgcl RSRing(Nk)·˙Nk×˙A×˙k×˙BSBS(Nk)·˙Nk×˙A×˙k×˙B×˙BS
41 38 25 39 40 syl3anc φk0N(Nk)·˙Nk×˙A×˙k×˙B×˙BS
42 oveq2 k=j1(Nk)=(Nj1)
43 oveq2 k=j1Nk=Nj1
44 43 oveq1d k=j1Nk×˙A=Nj1×˙A
45 oveq1 k=j1k×˙B=j1×˙B
46 44 45 oveq12d k=j1Nk×˙A×˙k×˙B=Nj1×˙A×˙j1×˙B
47 42 46 oveq12d k=j1(Nk)·˙Nk×˙A×˙k×˙B=(Nj1)·˙Nj1×˙A×˙j1×˙B
48 47 oveq1d k=j1(Nk)·˙Nk×˙A×˙k×˙B×˙B=(Nj1)·˙Nj1×˙A×˙j1×˙B×˙B
49 1 14 33 35 36 37 41 48 gsummptshft φRk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙B=Rj=0+1N+1(Nj1)·˙Nj1×˙A×˙j1×˙B×˙B
50 11 nn0cnd φN
51 50 adantr φj0+1N+1N
52 elfzelz j0+1N+1j
53 52 adantl φj0+1N+1j
54 53 zcnd φj0+1N+1j
55 1cnd φj0+1N+11
56 51 54 55 subsub3d φj0+1N+1Nj1=N+1-j
57 56 oveq1d φj0+1N+1Nj1×˙A=N+1-j×˙A
58 57 oveq1d φj0+1N+1Nj1×˙A×˙j1×˙B=N+1-j×˙A×˙j1×˙B
59 58 oveq2d φj0+1N+1(Nj1)·˙Nj1×˙A×˙j1×˙B=(Nj1)·˙N+1-j×˙A×˙j1×˙B
60 59 oveq1d φj0+1N+1(Nj1)·˙Nj1×˙A×˙j1×˙B×˙B=(Nj1)·˙N+1-j×˙A×˙j1×˙B×˙B
61 7 adantr φj0+1N+1RSRing
62 peano2zm jj1
63 52 62 syl j0+1N+1j1
64 bccl N0j1(Nj1)0
65 11 63 64 syl2an φj0+1N+1(Nj1)0
66 5 1 mgpbas S=BaseG
67 5 srgmgp RSRingGMnd
68 7 67 syl φGMnd
69 68 adantr φj0+1N+1GMnd
70 0p1e1 0+1=1
71 70 oveq1i 0+1N+1=1N+1
72 71 eleq2i j0+1N+1j1N+1
73 fznn0sub j1N+1N+1-j0
74 73 a1i φj1N+1N+1-j0
75 72 74 biimtrid φj0+1N+1N+1-j0
76 75 imp φj0+1N+1N+1-j0
77 8 adantr φj0+1N+1AS
78 66 6 69 76 77 mulgnn0cld φj0+1N+1N+1-j×˙AS
79 elfznn j1N+1j
80 nnm1nn0 jj10
81 79 80 syl j1N+1j10
82 72 81 sylbi j0+1N+1j10
83 82 adantl φj0+1N+1j10
84 9 adantr φj0+1N+1BS
85 66 6 69 83 84 mulgnn0cld φj0+1N+1j1×˙BS
86 1 3 2 srgmulgass RSRing(Nj1)0N+1-j×˙ASj1×˙BS(Nj1)·˙N+1-j×˙A×˙j1×˙B=(Nj1)·˙N+1-j×˙A×˙j1×˙B
87 61 65 78 85 86 syl13anc φj0+1N+1(Nj1)·˙N+1-j×˙A×˙j1×˙B=(Nj1)·˙N+1-j×˙A×˙j1×˙B
88 87 eqcomd φj0+1N+1(Nj1)·˙N+1-j×˙A×˙j1×˙B=(Nj1)·˙N+1-j×˙A×˙j1×˙B
89 88 oveq1d φj0+1N+1(Nj1)·˙N+1-j×˙A×˙j1×˙B×˙B=(Nj1)·˙N+1-j×˙A×˙j1×˙B×˙B
90 srgmnd RSRingRMnd
91 7 90 syl φRMnd
92 91 adantr φj0+1N+1RMnd
93 1 3 92 65 78 mulgnn0cld φj0+1N+1(Nj1)·˙N+1-j×˙AS
94 1 2 srgass RSRing(Nj1)·˙N+1-j×˙ASj1×˙BSBS(Nj1)·˙N+1-j×˙A×˙j1×˙B×˙B=(Nj1)·˙N+1-j×˙A×˙j1×˙B×˙B
95 61 93 85 84 94 syl13anc φj0+1N+1(Nj1)·˙N+1-j×˙A×˙j1×˙B×˙B=(Nj1)·˙N+1-j×˙A×˙j1×˙B×˙B
96 5 2 mgpplusg ×˙=+G
97 66 6 96 mulgnn0p1 GMndj10BSj-1+1×˙B=j1×˙B×˙B
98 97 eqcomd GMndj10BSj1×˙B×˙B=j-1+1×˙B
99 69 83 84 98 syl3anc φj0+1N+1j1×˙B×˙B=j-1+1×˙B
100 99 oveq2d φj0+1N+1(Nj1)·˙N+1-j×˙A×˙j1×˙B×˙B=(Nj1)·˙N+1-j×˙A×˙j-1+1×˙B
101 52 zcnd j0+1N+1j
102 1cnd j0+1N+11
103 101 102 npcand j0+1N+1j-1+1=j
104 103 adantl φj0+1N+1j-1+1=j
105 104 oveq1d φj0+1N+1j-1+1×˙B=j×˙B
106 105 oveq2d φj0+1N+1(Nj1)·˙N+1-j×˙A×˙j-1+1×˙B=(Nj1)·˙N+1-j×˙A×˙j×˙B
107 95 100 106 3eqtrd φj0+1N+1(Nj1)·˙N+1-j×˙A×˙j1×˙B×˙B=(Nj1)·˙N+1-j×˙A×˙j×˙B
108 60 89 107 3eqtrd φj0+1N+1(Nj1)·˙Nj1×˙A×˙j1×˙B×˙B=(Nj1)·˙N+1-j×˙A×˙j×˙B
109 108 mpteq2dva φj0+1N+1(Nj1)·˙Nj1×˙A×˙j1×˙B×˙B=j0+1N+1(Nj1)·˙N+1-j×˙A×˙j×˙B
110 109 oveq2d φRj=0+1N+1(Nj1)·˙Nj1×˙A×˙j1×˙B×˙B=Rj=0+1N+1(Nj1)·˙N+1-j×˙A×˙j×˙B
111 71 mpteq1i j0+1N+1(Nj1)·˙N+1-j×˙A×˙j×˙B=j1N+1(Nj1)·˙N+1-j×˙A×˙j×˙B
112 oveq1 j=kj1=k1
113 112 oveq2d j=k(Nj1)=(Nk1)
114 oveq2 j=kN+1-j=N+1-k
115 114 oveq1d j=kN+1-j×˙A=N+1-k×˙A
116 113 115 oveq12d j=k(Nj1)·˙N+1-j×˙A=(Nk1)·˙N+1-k×˙A
117 oveq1 j=kj×˙B=k×˙B
118 116 117 oveq12d j=k(Nj1)·˙N+1-j×˙A×˙j×˙B=(Nk1)·˙N+1-k×˙A×˙k×˙B
119 118 cbvmptv j1N+1(Nj1)·˙N+1-j×˙A×˙j×˙B=k1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
120 111 119 eqtri j0+1N+1(Nj1)·˙N+1-j×˙A×˙j×˙B=k1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
121 120 oveq2i Rj=0+1N+1(Nj1)·˙N+1-j×˙A×˙j×˙B=Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
122 fzfid φ1N+1Fin
123 simpl φk1N+1φ
124 elfzelz k1N+1k
125 peano2zm kk1
126 124 125 syl k1N+1k1
127 bccl N0k1(Nk1)0
128 11 126 127 syl2an φk1N+1(Nk1)0
129 fznn0sub k1N+1N+1-k0
130 129 adantl φk1N+1N+1-k0
131 elfznn k1N+1k
132 131 nnnn0d k1N+1k0
133 132 adantl φk1N+1k0
134 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem2 φ(Nk1)0N+1-k0k0(Nk1)·˙N+1-k×˙A×˙k×˙BS
135 123 128 130 133 134 syl13anc φk1N+1(Nk1)·˙N+1-k×˙A×˙k×˙BS
136 135 ralrimiva φk1N+1(Nk1)·˙N+1-k×˙A×˙k×˙BS
137 1 33 122 136 gsummptcl φRk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙BS
138 1 4 14 mndlid RMndRk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙BS0R+˙Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
139 91 137 138 syl2anc φ0R+˙Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
140 0nn0 00
141 140 a1i φ00
142 id φφ
143 0z 0
144 143 34 pm3.2i 01
145 zsubcl 0101
146 144 145 mp1i φ01
147 bccl N001(N01)0
148 11 146 147 syl2anc φ(N01)0
149 nn0cn N0N
150 peano2cn NN+1
151 149 150 syl N0N+1
152 151 subid1d N0N+1-0=N+1
153 peano2nn0 N0N+10
154 152 153 eqeltrd N0N+1-00
155 11 154 syl φN+1-00
156 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem2 φ(N01)0N+1-0000(N01)·˙N+1-0×˙A×˙0×˙BS
157 142 148 155 141 156 syl13anc φ(N01)·˙N+1-0×˙A×˙0×˙BS
158 oveq1 k=0k1=01
159 158 oveq2d k=0(Nk1)=(N01)
160 oveq2 k=0N+1-k=N+1-0
161 160 oveq1d k=0N+1-k×˙A=N+1-0×˙A
162 oveq1 k=0k×˙B=0×˙B
163 161 162 oveq12d k=0N+1-k×˙A×˙k×˙B=N+1-0×˙A×˙0×˙B
164 159 163 oveq12d k=0(Nk1)·˙N+1-k×˙A×˙k×˙B=(N01)·˙N+1-0×˙A×˙0×˙B
165 1 164 gsumsn RMnd00(N01)·˙N+1-0×˙A×˙0×˙BSRk0(Nk1)·˙N+1-k×˙A×˙k×˙B=(N01)·˙N+1-0×˙A×˙0×˙B
166 91 141 157 165 syl3anc φRk0(Nk1)·˙N+1-k×˙A×˙k×˙B=(N01)·˙N+1-0×˙A×˙0×˙B
167 0lt1 0<1
168 167 a1i φ0<1
169 168 70 breqtrrdi φ0<0+1
170 0re 0
171 1re 1
172 170 171 170 3pm3.2i 010
173 ltsubadd 01001<00<0+1
174 172 173 mp1i φ01<00<0+1
175 169 174 mpbird φ01<0
176 175 orcd φ01<0N<01
177 bcval4 N00101<0N<01(N01)=0
178 11 146 176 177 syl3anc φ(N01)=0
179 178 oveq1d φ(N01)·˙N+1-0×˙A×˙0×˙B=0·˙N+1-0×˙A×˙0×˙B
180 66 6 68 155 8 mulgnn0cld φN+1-0×˙AS
181 66 6 68 141 9 mulgnn0cld φ0×˙BS
182 1 2 srgcl RSRingN+1-0×˙AS0×˙BSN+1-0×˙A×˙0×˙BS
183 7 180 181 182 syl3anc φN+1-0×˙A×˙0×˙BS
184 1 14 3 mulg0 N+1-0×˙A×˙0×˙BS0·˙N+1-0×˙A×˙0×˙B=0R
185 183 184 syl φ0·˙N+1-0×˙A×˙0×˙B=0R
186 166 179 185 3eqtrrd φ0R=Rk0(Nk1)·˙N+1-k×˙A×˙k×˙B
187 186 oveq1d φ0R+˙Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk0(Nk1)·˙N+1-k×˙A×˙k×˙B+˙Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
188 139 187 eqtr3d φRk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk0(Nk1)·˙N+1-k×˙A×˙k×˙B+˙Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
189 7 adantr φk1N+1RSRing
190 68 adantr φk1N+1GMnd
191 8 adantr φk1N+1AS
192 66 6 190 130 191 mulgnn0cld φk1N+1N+1-k×˙AS
193 9 adantr φk1N+1BS
194 66 6 190 133 193 mulgnn0cld φk1N+1k×˙BS
195 1 3 2 srgmulgass RSRing(Nk1)0N+1-k×˙ASk×˙BS(Nk1)·˙N+1-k×˙A×˙k×˙B=(Nk1)·˙N+1-k×˙A×˙k×˙B
196 189 128 192 194 195 syl13anc φk1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=(Nk1)·˙N+1-k×˙A×˙k×˙B
197 196 mpteq2dva φk1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=k1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
198 197 oveq2d φRk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
199 11 153 syl φN+10
200 simpl φk0N+1φ
201 elfzelz k0N+1k
202 201 125 syl k0N+1k1
203 11 202 127 syl2an φk0N+1(Nk1)0
204 fznn0sub k0N+1N+1-k0
205 204 adantl φk0N+1N+1-k0
206 elfznn0 k0N+1k0
207 206 adantl φk0N+1k0
208 200 203 205 207 134 syl13anc φk0N+1(Nk1)·˙N+1-k×˙A×˙k×˙BS
209 1 4 33 199 208 gsummptfzsplitl φRk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B+˙Rk0(Nk1)·˙N+1-k×˙A×˙k×˙B
210 snfi 0Fin
211 210 a1i φ0Fin
212 164 eleq1d k=0(Nk1)·˙N+1-k×˙A×˙k×˙BS(N01)·˙N+1-0×˙A×˙0×˙BS
213 212 ralsng 00k0(Nk1)·˙N+1-k×˙A×˙k×˙BS(N01)·˙N+1-0×˙A×˙0×˙BS
214 140 213 ax-mp k0(Nk1)·˙N+1-k×˙A×˙k×˙BS(N01)·˙N+1-0×˙A×˙0×˙BS
215 157 214 sylibr φk0(Nk1)·˙N+1-k×˙A×˙k×˙BS
216 1 33 211 215 gsummptcl φRk0(Nk1)·˙N+1-k×˙A×˙k×˙BS
217 1 4 cmncom RCMndRk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙BSRk0(Nk1)·˙N+1-k×˙A×˙k×˙BSRk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B+˙Rk0(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk0(Nk1)·˙N+1-k×˙A×˙k×˙B+˙Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
218 33 137 216 217 syl3anc φRk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B+˙Rk0(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk0(Nk1)·˙N+1-k×˙A×˙k×˙B+˙Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
219 209 218 eqtrd φRk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk0(Nk1)·˙N+1-k×˙A×˙k×˙B+˙Rk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
220 188 198 219 3eqtr4d φRk=1N+1(Nk1)·˙N+1-k×˙A×˙k×˙B=Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
221 121 220 eqtrid φRj=0+1N+1(Nj1)·˙N+1-j×˙A×˙j×˙B=Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
222 49 110 221 3eqtrd φRk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙B=Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
223 31 222 eqtr3d φRk=0N(Nk)·˙Nk×˙A×˙k×˙B×˙B=Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B
224 13 223 sylan9eqr φψN×˙A+˙B×˙B=Rk=0N+1(Nk1)·˙N+1-k×˙A×˙k×˙B