Metamath Proof Explorer


Theorem gsummptfzsplitl

Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, , extracting a singleton from the left. (Contributed by AV, 7-Nov-2019)

Ref Expression
Hypotheses gsummptfzsplit.b B=BaseG
gsummptfzsplit.p +˙=+G
gsummptfzsplit.g φGCMnd
gsummptfzsplit.n φN0
gsummptfzsplitl.y φk0NYB
Assertion gsummptfzsplitl φGk=0NY=Gk=1NY+˙Gk0Y

Proof

Step Hyp Ref Expression
1 gsummptfzsplit.b B=BaseG
2 gsummptfzsplit.p +˙=+G
3 gsummptfzsplit.g φGCMnd
4 gsummptfzsplit.n φN0
5 gsummptfzsplitl.y φk0NYB
6 fzfid φ0NFin
7 incom 1N0=01N
8 7 a1i φ1N0=01N
9 1e0p1 1=0+1
10 9 oveq1i 1N=0+1N
11 10 a1i φ1N=0+1N
12 11 ineq2d φ01N=00+1N
13 elnn0uz N0N0
14 13 biimpi N0N0
15 fzpreddisj N000+1N=
16 4 14 15 3syl φ00+1N=
17 8 12 16 3eqtrd φ1N0=
18 fzpred N00N=00+1N
19 4 14 18 3syl φ0N=00+1N
20 uncom 00+1N=0+1N0
21 0p1e1 0+1=1
22 21 oveq1i 0+1N=1N
23 22 uneq1i 0+1N0=1N0
24 20 23 eqtri 00+1N=1N0
25 19 24 eqtrdi φ0N=1N0
26 1 2 3 6 5 17 25 gsummptfidmsplit φGk=0NY=Gk=1NY+˙Gk0Y