Metamath Proof Explorer


Theorem sspwtr

Description: Virtual deduction proof of the right-to-left implication of dftr4 . A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr without accumulating results. (Contributed by Alan Sare, 2-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sspwtr
|- ( A C_ ~P A -> Tr A )

Proof

Step Hyp Ref Expression
1 dftr2
 |-  ( Tr A <-> A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) )
2 idn1
 |-  (. A C_ ~P A ->. A C_ ~P A ).
3 idn2
 |-  (. A C_ ~P A ,. ( z e. y /\ y e. A ) ->. ( z e. y /\ y e. A ) ).
4 simpr
 |-  ( ( z e. y /\ y e. A ) -> y e. A )
5 3 4 e2
 |-  (. A C_ ~P A ,. ( z e. y /\ y e. A ) ->. y e. A ).
6 ssel
 |-  ( A C_ ~P A -> ( y e. A -> y e. ~P A ) )
7 2 5 6 e12
 |-  (. A C_ ~P A ,. ( z e. y /\ y e. A ) ->. y e. ~P A ).
8 elpwi
 |-  ( y e. ~P A -> y C_ A )
9 7 8 e2
 |-  (. A C_ ~P A ,. ( z e. y /\ y e. A ) ->. y C_ A ).
10 simpl
 |-  ( ( z e. y /\ y e. A ) -> z e. y )
11 3 10 e2
 |-  (. A C_ ~P A ,. ( z e. y /\ y e. A ) ->. z e. y ).
12 ssel
 |-  ( y C_ A -> ( z e. y -> z e. A ) )
13 9 11 12 e22
 |-  (. A C_ ~P A ,. ( z e. y /\ y e. A ) ->. z e. A ).
14 13 in2
 |-  (. A C_ ~P A ->. ( ( z e. y /\ y e. A ) -> z e. A ) ).
15 14 gen12
 |-  (. A C_ ~P A ->. A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) ).
16 biimpr
 |-  ( ( Tr A <-> A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) ) -> ( A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) -> Tr A ) )
17 1 15 16 e01
 |-  (. A C_ ~P A ->. Tr A ).
18 17 in1
 |-  ( A C_ ~P A -> Tr A )