Step |
Hyp |
Ref |
Expression |
1 |
|
dftr2 |
⊢ ( Tr 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
2 |
|
idn1 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 ▶ 𝐴 ⊆ 𝒫 𝐴 ) |
3 |
|
idn2 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ▶ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) |
4 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
5 |
3 4
|
e2 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ▶ 𝑦 ∈ 𝐴 ) |
6 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝒫 𝐴 ) ) |
7 |
2 5 6
|
e12 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ▶ 𝑦 ∈ 𝒫 𝐴 ) |
8 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴 ) |
9 |
7 8
|
e2 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ▶ 𝑦 ⊆ 𝐴 ) |
10 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝑦 ) |
11 |
3 10
|
e2 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝑦 ) |
12 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) ) |
13 |
9 11 12
|
e22 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ▶ 𝑧 ∈ 𝐴 ) |
14 |
13
|
in2 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 ▶ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
15 |
14
|
gen12 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 ▶ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
16 |
|
biimpr |
⊢ ( ( Tr 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) → Tr 𝐴 ) ) |
17 |
1 15 16
|
e01 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 ▶ Tr 𝐴 ) |
18 |
17
|
in1 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴 ) |