Metamath Proof Explorer


Theorem sspwtr

Description: Virtual deduction proof of the right-to-left implication of dftr4 . A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr without accumulating results. (Contributed by Alan Sare, 2-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sspwtr ( 𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴 )

Proof

Step Hyp Ref Expression
1 dftr2 ( Tr 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) )
2 idn1 (    𝐴 ⊆ 𝒫 𝐴    ▶    𝐴 ⊆ 𝒫 𝐴    )
3 idn2 (    𝐴 ⊆ 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    ( 𝑧𝑦𝑦𝐴 )    )
4 simpr ( ( 𝑧𝑦𝑦𝐴 ) → 𝑦𝐴 )
5 3 4 e2 (    𝐴 ⊆ 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑦𝐴    )
6 ssel ( 𝐴 ⊆ 𝒫 𝐴 → ( 𝑦𝐴𝑦 ∈ 𝒫 𝐴 ) )
7 2 5 6 e12 (    𝐴 ⊆ 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑦 ∈ 𝒫 𝐴    )
8 elpwi ( 𝑦 ∈ 𝒫 𝐴𝑦𝐴 )
9 7 8 e2 (    𝐴 ⊆ 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑦𝐴    )
10 simpl ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝑦 )
11 3 10 e2 (    𝐴 ⊆ 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑧𝑦    )
12 ssel ( 𝑦𝐴 → ( 𝑧𝑦𝑧𝐴 ) )
13 9 11 12 e22 (    𝐴 ⊆ 𝒫 𝐴    ,    ( 𝑧𝑦𝑦𝐴 )    ▶    𝑧𝐴    )
14 13 in2 (    𝐴 ⊆ 𝒫 𝐴    ▶    ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 )    )
15 14 gen12 (    𝐴 ⊆ 𝒫 𝐴    ▶   𝑧𝑦 ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 )    )
16 biimpr ( ( Tr 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) ) → ( ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) → Tr 𝐴 ) )
17 1 15 16 e01 (    𝐴 ⊆ 𝒫 𝐴    ▶    Tr 𝐴    )
18 17 in1 ( 𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴 )