| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dftr2 | ⊢ ( Tr  𝐴  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 2 |  | idn1 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ▶    𝐴  ⊆  𝒫  𝐴    ) | 
						
							| 3 |  | idn2 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ,    ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )    ▶    ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )    ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐴 ) | 
						
							| 5 | 3 4 | e2 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ,    ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )    ▶    𝑦  ∈  𝐴    ) | 
						
							| 6 |  | ssel | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  𝒫  𝐴 ) ) | 
						
							| 7 | 2 5 6 | e12 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ,    ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )    ▶    𝑦  ∈  𝒫  𝐴    ) | 
						
							| 8 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝐴  →  𝑦  ⊆  𝐴 ) | 
						
							| 9 | 7 8 | e2 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ,    ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )    ▶    𝑦  ⊆  𝐴    ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝑦 ) | 
						
							| 11 | 3 10 | e2 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ,    ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )    ▶    𝑧  ∈  𝑦    ) | 
						
							| 12 |  | ssel | ⊢ ( 𝑦  ⊆  𝐴  →  ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐴 ) ) | 
						
							| 13 | 9 11 12 | e22 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ,    ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )    ▶    𝑧  ∈  𝐴    ) | 
						
							| 14 | 13 | in2 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ▶    ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 )    ) | 
						
							| 15 | 14 | gen12 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ▶    ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 )    ) | 
						
							| 16 |  | biimpr | ⊢ ( ( Tr  𝐴  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 )  →  Tr  𝐴 ) ) | 
						
							| 17 | 1 15 16 | e01 | ⊢ (    𝐴  ⊆  𝒫  𝐴    ▶    Tr  𝐴    ) | 
						
							| 18 | 17 | in1 | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  Tr  𝐴 ) |