Step |
Hyp |
Ref |
Expression |
1 |
|
dftr2 |
⊢ ( Tr 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
2 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
3 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝒫 𝐴 ) ) |
4 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴 ) |
5 |
2 3 4
|
syl56 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ⊆ 𝐴 ) ) |
6 |
|
idd |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) ) ) |
7 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝑦 ) |
8 |
6 7
|
syl6 |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝑦 ) ) |
9 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴 ) ) |
10 |
5 8 9
|
syl6c |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
11 |
10
|
alrimivv |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
12 |
|
biimpr |
⊢ ( ( Tr 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) → ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) → Tr 𝐴 ) ) |
13 |
1 11 12
|
mpsyl |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴 ) |
14 |
13
|
idiALT |
⊢ ( 𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴 ) |