| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dftr2 | ⊢ ( Tr  𝐴  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐴 ) | 
						
							| 3 |  | ssel | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  ( 𝑦  ∈  𝐴  →  𝑦  ∈  𝒫  𝐴 ) ) | 
						
							| 4 |  | elpwi | ⊢ ( 𝑦  ∈  𝒫  𝐴  →  𝑦  ⊆  𝐴 ) | 
						
							| 5 | 2 3 4 | syl56 | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑦  ⊆  𝐴 ) ) | 
						
							| 6 |  | idd | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 ) ) ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝑦 ) | 
						
							| 8 | 6 7 | syl6 | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝑦 ) ) | 
						
							| 9 |  | ssel | ⊢ ( 𝑦  ⊆  𝐴  →  ( 𝑧  ∈  𝑦  →  𝑧  ∈  𝐴 ) ) | 
						
							| 10 | 5 8 9 | syl6c | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 11 | 10 | alrimivv | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 12 |  | biimpr | ⊢ ( ( Tr  𝐴  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) )  →  ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 )  →  Tr  𝐴 ) ) | 
						
							| 13 | 1 11 12 | mpsyl | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  Tr  𝐴 ) | 
						
							| 14 | 13 | idiALT | ⊢ ( 𝐴  ⊆  𝒫  𝐴  →  Tr  𝐴 ) |