Metamath Proof Explorer


Theorem sspwtrALT

Description: Virtual deduction proof of sspwtr . This proof is the same as the proof of sspwtr except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A class which is a subclass of its power class is transitive. (Contributed by Alan Sare, 3-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sspwtrALT A 𝒫 A Tr A

Proof

Step Hyp Ref Expression
1 dftr2 Tr A z y z y y A z A
2 simpr z y y A y A
3 ssel A 𝒫 A y A y 𝒫 A
4 elpwi y 𝒫 A y A
5 2 3 4 syl56 A 𝒫 A z y y A y A
6 idd A 𝒫 A z y y A z y y A
7 simpl z y y A z y
8 6 7 syl6 A 𝒫 A z y y A z y
9 ssel y A z y z A
10 5 8 9 syl6c A 𝒫 A z y y A z A
11 10 alrimivv A 𝒫 A z y z y y A z A
12 biimpr Tr A z y z y y A z A z y z y y A z A Tr A
13 1 11 12 mpsyl A 𝒫 A Tr A
14 13 idiALT A 𝒫 A Tr A