Metamath Proof Explorer


Theorem sspwtrALT

Description: Virtual deduction proof of sspwtr . This proof is the same as the proof of sspwtr except each virtual deduction symbol is replaced by its non-virtual deduction symbol equivalent. A class which is a subclass of its power class is transitive. (Contributed by Alan Sare, 3-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sspwtrALT
|- ( A C_ ~P A -> Tr A )

Proof

Step Hyp Ref Expression
1 dftr2
 |-  ( Tr A <-> A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) )
2 simpr
 |-  ( ( z e. y /\ y e. A ) -> y e. A )
3 ssel
 |-  ( A C_ ~P A -> ( y e. A -> y e. ~P A ) )
4 elpwi
 |-  ( y e. ~P A -> y C_ A )
5 2 3 4 syl56
 |-  ( A C_ ~P A -> ( ( z e. y /\ y e. A ) -> y C_ A ) )
6 idd
 |-  ( A C_ ~P A -> ( ( z e. y /\ y e. A ) -> ( z e. y /\ y e. A ) ) )
7 simpl
 |-  ( ( z e. y /\ y e. A ) -> z e. y )
8 6 7 syl6
 |-  ( A C_ ~P A -> ( ( z e. y /\ y e. A ) -> z e. y ) )
9 ssel
 |-  ( y C_ A -> ( z e. y -> z e. A ) )
10 5 8 9 syl6c
 |-  ( A C_ ~P A -> ( ( z e. y /\ y e. A ) -> z e. A ) )
11 10 alrimivv
 |-  ( A C_ ~P A -> A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) )
12 biimpr
 |-  ( ( Tr A <-> A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) ) -> ( A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) -> Tr A ) )
13 1 11 12 mpsyl
 |-  ( A C_ ~P A -> Tr A )
14 13 idiALT
 |-  ( A C_ ~P A -> Tr A )