Metamath Proof Explorer


Theorem sspwtrALT2

Description: Short predicate calculus proof of the right-to-left implication of dftr4 . A class which is a subclass of its power class is transitive. This proof was constructed by applying Metamath's minimize command to the proof of sspwtrALT , which is the virtual deduction proof sspwtr without virtual deductions. (Contributed by Alan Sare, 3-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sspwtrALT2
|- ( A C_ ~P A -> Tr A )

Proof

Step Hyp Ref Expression
1 ssel
 |-  ( A C_ ~P A -> ( y e. A -> y e. ~P A ) )
2 1 adantld
 |-  ( A C_ ~P A -> ( ( z e. y /\ y e. A ) -> y e. ~P A ) )
3 elpwi
 |-  ( y e. ~P A -> y C_ A )
4 2 3 syl6
 |-  ( A C_ ~P A -> ( ( z e. y /\ y e. A ) -> y C_ A ) )
5 simpl
 |-  ( ( z e. y /\ y e. A ) -> z e. y )
6 5 a1i
 |-  ( A C_ ~P A -> ( ( z e. y /\ y e. A ) -> z e. y ) )
7 ssel
 |-  ( y C_ A -> ( z e. y -> z e. A ) )
8 4 6 7 syl6c
 |-  ( A C_ ~P A -> ( ( z e. y /\ y e. A ) -> z e. A ) )
9 8 alrimivv
 |-  ( A C_ ~P A -> A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) )
10 dftr2
 |-  ( Tr A <-> A. z A. y ( ( z e. y /\ y e. A ) -> z e. A ) )
11 9 10 sylibr
 |-  ( A C_ ~P A -> Tr A )