Description: Theorem for classically strong set of states. If there exists a
"classically strong set of states" on lattice CH (or actually any
ortholattice, which would have an identical proof), then any two
elements of the lattice commute, i.e., the lattice is distributive.
(Proof due to Mladen Pavicic.) Theorem 3.3 of MegPav2000 p. 2344.
(Contributed by NM, 24-Oct-1999)(New usage is discouraged.)
Ref
Expression
Hypotheses
stcltrth.1
|- A e. CH
stcltrth.2
|- B e. CH
stcltrth.3
|- E. s e. States A. x e. CH A. y e. CH ( ( ( s ` x ) = 1 -> ( s ` y ) = 1 ) -> x C_ y )
|- ( ( s e. States /\ A. x e. CH A. y e. CH ( ( ( s ` x ) = 1 -> ( s ` y ) = 1 ) -> x C_ y ) ) <-> ( s e. States /\ A. x e. CH A. y e. CH ( ( ( s ` x ) = 1 -> ( s ` y ) = 1 ) -> x C_ y ) ) )