Metamath Proof Explorer


Theorem stcltrlem2

Description: Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stcltr1.1
|- ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) )
stcltr1.2
|- A e. CH
stcltrlem1.3
|- B e. CH
Assertion stcltrlem2
|- ( ph -> B C_ ( ( _|_ ` A ) vH ( A i^i B ) ) )

Proof

Step Hyp Ref Expression
1 stcltr1.1
 |-  ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) )
2 stcltr1.2
 |-  A e. CH
3 stcltrlem1.3
 |-  B e. CH
4 1 2 3 stcltrlem1
 |-  ( ph -> ( ( S ` B ) = 1 -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = 1 ) )
5 2 choccli
 |-  ( _|_ ` A ) e. CH
6 2 3 chincli
 |-  ( A i^i B ) e. CH
7 5 6 chjcli
 |-  ( ( _|_ ` A ) vH ( A i^i B ) ) e. CH
8 1 3 7 stcltr1i
 |-  ( ph -> ( ( ( S ` B ) = 1 -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = 1 ) -> B C_ ( ( _|_ ` A ) vH ( A i^i B ) ) ) )
9 4 8 mpd
 |-  ( ph -> B C_ ( ( _|_ ` A ) vH ( A i^i B ) ) )