Step |
Hyp |
Ref |
Expression |
1 |
|
stcltr1.1 |
|- ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) ) |
2 |
|
stcltr1.2 |
|- A e. CH |
3 |
|
stcltrlem1.3 |
|- B e. CH |
4 |
1 2 3
|
stcltrlem1 |
|- ( ph -> ( ( S ` B ) = 1 -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = 1 ) ) |
5 |
2
|
choccli |
|- ( _|_ ` A ) e. CH |
6 |
2 3
|
chincli |
|- ( A i^i B ) e. CH |
7 |
5 6
|
chjcli |
|- ( ( _|_ ` A ) vH ( A i^i B ) ) e. CH |
8 |
1 3 7
|
stcltr1i |
|- ( ph -> ( ( ( S ` B ) = 1 -> ( S ` ( ( _|_ ` A ) vH ( A i^i B ) ) ) = 1 ) -> B C_ ( ( _|_ ` A ) vH ( A i^i B ) ) ) ) |
9 |
4 8
|
mpd |
|- ( ph -> B C_ ( ( _|_ ` A ) vH ( A i^i B ) ) ) |