Step |
Hyp |
Ref |
Expression |
1 |
|
stcltr1.1 |
|- ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) ) |
2 |
|
stcltr1.2 |
|- A e. CH |
3 |
|
stcltr1.3 |
|- B e. CH |
4 |
|
fveqeq2 |
|- ( x = A -> ( ( S ` x ) = 1 <-> ( S ` A ) = 1 ) ) |
5 |
4
|
imbi1d |
|- ( x = A -> ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) <-> ( ( S ` A ) = 1 -> ( S ` y ) = 1 ) ) ) |
6 |
|
sseq1 |
|- ( x = A -> ( x C_ y <-> A C_ y ) ) |
7 |
5 6
|
imbi12d |
|- ( x = A -> ( ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) <-> ( ( ( S ` A ) = 1 -> ( S ` y ) = 1 ) -> A C_ y ) ) ) |
8 |
|
fveqeq2 |
|- ( y = B -> ( ( S ` y ) = 1 <-> ( S ` B ) = 1 ) ) |
9 |
8
|
imbi2d |
|- ( y = B -> ( ( ( S ` A ) = 1 -> ( S ` y ) = 1 ) <-> ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) ) ) |
10 |
|
sseq2 |
|- ( y = B -> ( A C_ y <-> A C_ B ) ) |
11 |
9 10
|
imbi12d |
|- ( y = B -> ( ( ( ( S ` A ) = 1 -> ( S ` y ) = 1 ) -> A C_ y ) <-> ( ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) -> A C_ B ) ) ) |
12 |
7 11
|
rspc2v |
|- ( ( A e. CH /\ B e. CH ) -> ( A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) -> ( ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) -> A C_ B ) ) ) |
13 |
2 3 12
|
mp2an |
|- ( A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) -> ( ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) -> A C_ B ) ) |
14 |
1 13
|
simplbiim |
|- ( ph -> ( ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) -> A C_ B ) ) |