| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stcltr1.1 |  |-  ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) ) | 
						
							| 2 |  | stcltr1.2 |  |-  A e. CH | 
						
							| 3 |  | stcltr1.3 |  |-  B e. CH | 
						
							| 4 |  | fveqeq2 |  |-  ( x = A -> ( ( S ` x ) = 1 <-> ( S ` A ) = 1 ) ) | 
						
							| 5 | 4 | imbi1d |  |-  ( x = A -> ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) <-> ( ( S ` A ) = 1 -> ( S ` y ) = 1 ) ) ) | 
						
							| 6 |  | sseq1 |  |-  ( x = A -> ( x C_ y <-> A C_ y ) ) | 
						
							| 7 | 5 6 | imbi12d |  |-  ( x = A -> ( ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) <-> ( ( ( S ` A ) = 1 -> ( S ` y ) = 1 ) -> A C_ y ) ) ) | 
						
							| 8 |  | fveqeq2 |  |-  ( y = B -> ( ( S ` y ) = 1 <-> ( S ` B ) = 1 ) ) | 
						
							| 9 | 8 | imbi2d |  |-  ( y = B -> ( ( ( S ` A ) = 1 -> ( S ` y ) = 1 ) <-> ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) ) ) | 
						
							| 10 |  | sseq2 |  |-  ( y = B -> ( A C_ y <-> A C_ B ) ) | 
						
							| 11 | 9 10 | imbi12d |  |-  ( y = B -> ( ( ( ( S ` A ) = 1 -> ( S ` y ) = 1 ) -> A C_ y ) <-> ( ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) -> A C_ B ) ) ) | 
						
							| 12 | 7 11 | rspc2v |  |-  ( ( A e. CH /\ B e. CH ) -> ( A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) -> ( ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) -> A C_ B ) ) ) | 
						
							| 13 | 2 3 12 | mp2an |  |-  ( A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) -> ( ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) -> A C_ B ) ) | 
						
							| 14 | 1 13 | simplbiim |  |-  ( ph -> ( ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) -> A C_ B ) ) |