Step |
Hyp |
Ref |
Expression |
1 |
|
stcltr1.1 |
|- ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) ) |
2 |
|
stcltr1.2 |
|- A e. CH |
3 |
|
ax-1 |
|- ( ( S ` A ) = 1 -> ( ( S ` ~H ) = 1 -> ( S ` A ) = 1 ) ) |
4 |
|
helch |
|- ~H e. CH |
5 |
1 4 2
|
stcltr1i |
|- ( ph -> ( ( ( S ` ~H ) = 1 -> ( S ` A ) = 1 ) -> ~H C_ A ) ) |
6 |
3 5
|
syl5 |
|- ( ph -> ( ( S ` A ) = 1 -> ~H C_ A ) ) |
7 |
2
|
chssii |
|- A C_ ~H |
8 |
|
eqss |
|- ( A = ~H <-> ( A C_ ~H /\ ~H C_ A ) ) |
9 |
7 8
|
mpbiran |
|- ( A = ~H <-> ~H C_ A ) |
10 |
6 9
|
syl6ibr |
|- ( ph -> ( ( S ` A ) = 1 -> A = ~H ) ) |