Metamath Proof Explorer


Theorem stcltr2i

Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stcltr1.1
|- ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) )
stcltr1.2
|- A e. CH
Assertion stcltr2i
|- ( ph -> ( ( S ` A ) = 1 -> A = ~H ) )

Proof

Step Hyp Ref Expression
1 stcltr1.1
 |-  ( ph <-> ( S e. States /\ A. x e. CH A. y e. CH ( ( ( S ` x ) = 1 -> ( S ` y ) = 1 ) -> x C_ y ) ) )
2 stcltr1.2
 |-  A e. CH
3 ax-1
 |-  ( ( S ` A ) = 1 -> ( ( S ` ~H ) = 1 -> ( S ` A ) = 1 ) )
4 helch
 |-  ~H e. CH
5 1 4 2 stcltr1i
 |-  ( ph -> ( ( ( S ` ~H ) = 1 -> ( S ` A ) = 1 ) -> ~H C_ A ) )
6 3 5 syl5
 |-  ( ph -> ( ( S ` A ) = 1 -> ~H C_ A ) )
7 2 chssii
 |-  A C_ ~H
8 eqss
 |-  ( A = ~H <-> ( A C_ ~H /\ ~H C_ A ) )
9 7 8 mpbiran
 |-  ( A = ~H <-> ~H C_ A )
10 6 9 syl6ibr
 |-  ( ph -> ( ( S ` A ) = 1 -> A = ~H ) )