Metamath Proof Explorer


Theorem stcltr2i

Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stcltr1.1 ( 𝜑 ↔ ( 𝑆 ∈ States ∧ ∀ 𝑥C𝑦C ( ( ( 𝑆𝑥 ) = 1 → ( 𝑆𝑦 ) = 1 ) → 𝑥𝑦 ) ) )
stcltr1.2 𝐴C
Assertion stcltr2i ( 𝜑 → ( ( 𝑆𝐴 ) = 1 → 𝐴 = ℋ ) )

Proof

Step Hyp Ref Expression
1 stcltr1.1 ( 𝜑 ↔ ( 𝑆 ∈ States ∧ ∀ 𝑥C𝑦C ( ( ( 𝑆𝑥 ) = 1 → ( 𝑆𝑦 ) = 1 ) → 𝑥𝑦 ) ) )
2 stcltr1.2 𝐴C
3 ax-1 ( ( 𝑆𝐴 ) = 1 → ( ( 𝑆 ‘ ℋ ) = 1 → ( 𝑆𝐴 ) = 1 ) )
4 helch ℋ ∈ C
5 1 4 2 stcltr1i ( 𝜑 → ( ( ( 𝑆 ‘ ℋ ) = 1 → ( 𝑆𝐴 ) = 1 ) → ℋ ⊆ 𝐴 ) )
6 3 5 syl5 ( 𝜑 → ( ( 𝑆𝐴 ) = 1 → ℋ ⊆ 𝐴 ) )
7 2 chssii 𝐴 ⊆ ℋ
8 eqss ( 𝐴 = ℋ ↔ ( 𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴 ) )
9 7 8 mpbiran ( 𝐴 = ℋ ↔ ℋ ⊆ 𝐴 )
10 6 9 syl6ibr ( 𝜑 → ( ( 𝑆𝐴 ) = 1 → 𝐴 = ℋ ) )