Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stcltr1.1 | ⊢ ( 𝜑 ↔ ( 𝑆 ∈ States ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( ( ( 𝑆 ‘ 𝑥 ) = 1 → ( 𝑆 ‘ 𝑦 ) = 1 ) → 𝑥 ⊆ 𝑦 ) ) ) | |
| stcltr1.2 | ⊢ 𝐴 ∈ Cℋ | ||
| Assertion | stcltr2i | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) = 1 → 𝐴 = ℋ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stcltr1.1 | ⊢ ( 𝜑 ↔ ( 𝑆 ∈ States ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( ( ( 𝑆 ‘ 𝑥 ) = 1 → ( 𝑆 ‘ 𝑦 ) = 1 ) → 𝑥 ⊆ 𝑦 ) ) ) | |
| 2 | stcltr1.2 | ⊢ 𝐴 ∈ Cℋ | |
| 3 | ax-1 | ⊢ ( ( 𝑆 ‘ 𝐴 ) = 1 → ( ( 𝑆 ‘ ℋ ) = 1 → ( 𝑆 ‘ 𝐴 ) = 1 ) ) | |
| 4 | helch | ⊢ ℋ ∈ Cℋ | |
| 5 | 1 4 2 | stcltr1i | ⊢ ( 𝜑 → ( ( ( 𝑆 ‘ ℋ ) = 1 → ( 𝑆 ‘ 𝐴 ) = 1 ) → ℋ ⊆ 𝐴 ) ) |
| 6 | 3 5 | syl5 | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) = 1 → ℋ ⊆ 𝐴 ) ) |
| 7 | 2 | chssii | ⊢ 𝐴 ⊆ ℋ |
| 8 | eqss | ⊢ ( 𝐴 = ℋ ↔ ( 𝐴 ⊆ ℋ ∧ ℋ ⊆ 𝐴 ) ) | |
| 9 | 7 8 | mpbiran | ⊢ ( 𝐴 = ℋ ↔ ℋ ⊆ 𝐴 ) |
| 10 | 6 9 | imbitrrdi | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) = 1 → 𝐴 = ℋ ) ) |