| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stcltr1.1 | ⊢ ( 𝜑  ↔  ( 𝑆  ∈  States  ∧  ∀ 𝑥  ∈   Cℋ  ∀ 𝑦  ∈   Cℋ  ( ( ( 𝑆 ‘ 𝑥 )  =  1  →  ( 𝑆 ‘ 𝑦 )  =  1 )  →  𝑥  ⊆  𝑦 ) ) ) | 
						
							| 2 |  | stcltr1.2 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 3 |  | stcltrlem1.3 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 4 | 1 | simplbi | ⊢ ( 𝜑  →  𝑆  ∈  States ) | 
						
							| 5 | 2 3 | stji1i | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  =  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  =  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  →  ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  =  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) ) ) ) | 
						
							| 8 | 1 3 | stcltr2i | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 )  =  1  →  𝐵  =   ℋ ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  →  𝐵  =   ℋ ) | 
						
							| 10 |  | ineq2 | ⊢ ( 𝐵  =   ℋ  →  ( 𝐴  ∩  𝐵 )  =  ( 𝐴  ∩   ℋ ) ) | 
						
							| 11 | 2 | chm1i | ⊢ ( 𝐴  ∩   ℋ )  =  𝐴 | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( 𝐵  =   ℋ  →  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 13 | 9 12 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  →  ( 𝐴  ∩  𝐵 )  =  𝐴 ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  →  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) )  =  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  →  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) ) )  =  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 16 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  →  𝑆  ∈  States ) | 
						
							| 17 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐴 )  ∈   Cℋ | 
						
							| 18 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( ( ⊥ ‘ 𝐴 )  ∈   Cℋ   →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℝ ) ) | 
						
							| 19 | 17 18 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 21 |  | stcl | ⊢ ( 𝑆  ∈  States  →  ( 𝐴  ∈   Cℋ   →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 22 | 2 21 | mpi | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 23 | 22 | recnd | ⊢ ( 𝑆  ∈  States  →  ( 𝑆 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 24 | 20 23 | addcomd | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ 𝐴 ) )  =  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) | 
						
							| 25 | 2 | sto1i | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ 𝐴 )  +  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  1 ) | 
						
							| 26 | 24 25 | eqtrd | ⊢ ( 𝑆  ∈  States  →  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ 𝐴 ) )  =  1 ) | 
						
							| 27 | 16 26 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  →  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ 𝐴 ) )  =  1 ) | 
						
							| 28 | 15 27 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  →  ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  +  ( 𝑆 ‘ ( 𝐴  ∩  𝐵 ) ) )  =  1 ) | 
						
							| 29 | 7 28 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑆 ‘ 𝐵 )  =  1 )  →  ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  =  1 ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐵 )  =  1  →  ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 )  ∨ℋ  ( 𝐴  ∩  𝐵 ) ) )  =  1 ) ) |