| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stcltr1.1 |
⊢ ( 𝜑 ↔ ( 𝑆 ∈ States ∧ ∀ 𝑥 ∈ Cℋ ∀ 𝑦 ∈ Cℋ ( ( ( 𝑆 ‘ 𝑥 ) = 1 → ( 𝑆 ‘ 𝑦 ) = 1 ) → 𝑥 ⊆ 𝑦 ) ) ) |
| 2 |
|
stcltr1.2 |
⊢ 𝐴 ∈ Cℋ |
| 3 |
|
stcltrlem1.3 |
⊢ 𝐵 ∈ Cℋ |
| 4 |
1
|
simplbi |
⊢ ( 𝜑 → 𝑆 ∈ States ) |
| 5 |
2 3
|
stji1i |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 6 |
4 5
|
syl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 8 |
1 3
|
stcltr2i |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) = 1 → 𝐵 = ℋ ) ) |
| 9 |
8
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) → 𝐵 = ℋ ) |
| 10 |
|
ineq2 |
⊢ ( 𝐵 = ℋ → ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ ℋ ) ) |
| 11 |
2
|
chm1i |
⊢ ( 𝐴 ∩ ℋ ) = 𝐴 |
| 12 |
10 11
|
eqtrdi |
⊢ ( 𝐵 = ℋ → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 13 |
9 12
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) → ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) = ( 𝑆 ‘ 𝐴 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) → ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ 𝐴 ) ) ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) → 𝑆 ∈ States ) |
| 17 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 18 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℝ ) ) |
| 19 |
17 18
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℝ ) |
| 20 |
19
|
recnd |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℂ ) |
| 21 |
|
stcl |
⊢ ( 𝑆 ∈ States → ( 𝐴 ∈ Cℋ → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) ) |
| 22 |
2 21
|
mpi |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( 𝑆 ∈ States → ( 𝑆 ‘ 𝐴 ) ∈ ℂ ) |
| 24 |
20 23
|
addcomd |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ 𝐴 ) ) = ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 25 |
2
|
sto1i |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ 𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 1 ) |
| 26 |
24 25
|
eqtrd |
⊢ ( 𝑆 ∈ States → ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ 𝐴 ) ) = 1 ) |
| 27 |
16 26
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) → ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ 𝐴 ) ) = 1 ) |
| 28 |
15 27
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) → ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) + ( 𝑆 ‘ ( 𝐴 ∩ 𝐵 ) ) ) = 1 ) |
| 29 |
7 28
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑆 ‘ 𝐵 ) = 1 ) → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = 1 ) |
| 30 |
29
|
ex |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) = 1 → ( 𝑆 ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( 𝐴 ∩ 𝐵 ) ) ) = 1 ) ) |