Metamath Proof Explorer


Theorem stcltrlem1

Description: Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses stcltr1.1 φ S States x C y C S x = 1 S y = 1 x y
stcltr1.2 A C
stcltrlem1.3 B C
Assertion stcltrlem1 φ S B = 1 S A A B = 1

Proof

Step Hyp Ref Expression
1 stcltr1.1 φ S States x C y C S x = 1 S y = 1 x y
2 stcltr1.2 A C
3 stcltrlem1.3 B C
4 1 simplbi φ S States
5 2 3 stji1i S States S A A B = S A + S A B
6 4 5 syl φ S A A B = S A + S A B
7 6 adantr φ S B = 1 S A A B = S A + S A B
8 1 3 stcltr2i φ S B = 1 B =
9 8 imp φ S B = 1 B =
10 ineq2 B = A B = A
11 2 chm1i A = A
12 10 11 eqtrdi B = A B = A
13 9 12 syl φ S B = 1 A B = A
14 13 fveq2d φ S B = 1 S A B = S A
15 14 oveq2d φ S B = 1 S A + S A B = S A + S A
16 4 adantr φ S B = 1 S States
17 2 choccli A C
18 stcl S States A C S A
19 17 18 mpi S States S A
20 19 recnd S States S A
21 stcl S States A C S A
22 2 21 mpi S States S A
23 22 recnd S States S A
24 20 23 addcomd S States S A + S A = S A + S A
25 2 sto1i S States S A + S A = 1
26 24 25 eqtrd S States S A + S A = 1
27 16 26 syl φ S B = 1 S A + S A = 1
28 15 27 eqtrd φ S B = 1 S A + S A B = 1
29 7 28 eqtrd φ S B = 1 S A A B = 1
30 29 ex φ S B = 1 S A A B = 1