Metamath Proof Explorer


Theorem sto1i

Description: The state of a subspace plus the state of its orthocomplement. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis sto1.1 AC
Assertion sto1i SStatesSA+SA=1

Proof

Step Hyp Ref Expression
1 sto1.1 AC
2 1 chjoi AA=
3 2 fveq2i SAA=S
4 1 choccli AC
5 1 4 pm3.2i ACAC
6 1 chshii AS
7 shococss ASAA
8 6 7 ax-mp AA
9 stj SStatesACACAASAA=SA+SA
10 5 8 9 mp2ani SStatesSAA=SA+SA
11 sthil SStatesS=1
12 3 10 11 3eqtr3a SStatesSA+SA=1