Metamath Proof Explorer


Theorem sto1i

Description: The state of a subspace plus the state of its orthocomplement. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis sto1.1
|- A e. CH
Assertion sto1i
|- ( S e. States -> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 )

Proof

Step Hyp Ref Expression
1 sto1.1
 |-  A e. CH
2 1 chjoi
 |-  ( A vH ( _|_ ` A ) ) = ~H
3 2 fveq2i
 |-  ( S ` ( A vH ( _|_ ` A ) ) ) = ( S ` ~H )
4 1 choccli
 |-  ( _|_ ` A ) e. CH
5 1 4 pm3.2i
 |-  ( A e. CH /\ ( _|_ ` A ) e. CH )
6 1 chshii
 |-  A e. SH
7 shococss
 |-  ( A e. SH -> A C_ ( _|_ ` ( _|_ ` A ) ) )
8 6 7 ax-mp
 |-  A C_ ( _|_ ` ( _|_ ` A ) )
9 stj
 |-  ( S e. States -> ( ( ( A e. CH /\ ( _|_ ` A ) e. CH ) /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) ) )
10 5 8 9 mp2ani
 |-  ( S e. States -> ( S ` ( A vH ( _|_ ` A ) ) ) = ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) )
11 sthil
 |-  ( S e. States -> ( S ` ~H ) = 1 )
12 3 10 11 3eqtr3a
 |-  ( S e. States -> ( ( S ` A ) + ( S ` ( _|_ ` A ) ) ) = 1 )