Step |
Hyp |
Ref |
Expression |
1 |
|
isst |
|- ( S e. States <-> ( S : CH --> ( 0 [,] 1 ) /\ ( S ` ~H ) = 1 /\ A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( S ` ( x vH y ) ) = ( ( S ` x ) + ( S ` y ) ) ) ) ) |
2 |
1
|
simp3bi |
|- ( S e. States -> A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( S ` ( x vH y ) ) = ( ( S ` x ) + ( S ` y ) ) ) ) |
3 |
|
sseq1 |
|- ( x = A -> ( x C_ ( _|_ ` y ) <-> A C_ ( _|_ ` y ) ) ) |
4 |
|
fvoveq1 |
|- ( x = A -> ( S ` ( x vH y ) ) = ( S ` ( A vH y ) ) ) |
5 |
|
fveq2 |
|- ( x = A -> ( S ` x ) = ( S ` A ) ) |
6 |
5
|
oveq1d |
|- ( x = A -> ( ( S ` x ) + ( S ` y ) ) = ( ( S ` A ) + ( S ` y ) ) ) |
7 |
4 6
|
eqeq12d |
|- ( x = A -> ( ( S ` ( x vH y ) ) = ( ( S ` x ) + ( S ` y ) ) <-> ( S ` ( A vH y ) ) = ( ( S ` A ) + ( S ` y ) ) ) ) |
8 |
3 7
|
imbi12d |
|- ( x = A -> ( ( x C_ ( _|_ ` y ) -> ( S ` ( x vH y ) ) = ( ( S ` x ) + ( S ` y ) ) ) <-> ( A C_ ( _|_ ` y ) -> ( S ` ( A vH y ) ) = ( ( S ` A ) + ( S ` y ) ) ) ) ) |
9 |
|
fveq2 |
|- ( y = B -> ( _|_ ` y ) = ( _|_ ` B ) ) |
10 |
9
|
sseq2d |
|- ( y = B -> ( A C_ ( _|_ ` y ) <-> A C_ ( _|_ ` B ) ) ) |
11 |
|
oveq2 |
|- ( y = B -> ( A vH y ) = ( A vH B ) ) |
12 |
11
|
fveq2d |
|- ( y = B -> ( S ` ( A vH y ) ) = ( S ` ( A vH B ) ) ) |
13 |
|
fveq2 |
|- ( y = B -> ( S ` y ) = ( S ` B ) ) |
14 |
13
|
oveq2d |
|- ( y = B -> ( ( S ` A ) + ( S ` y ) ) = ( ( S ` A ) + ( S ` B ) ) ) |
15 |
12 14
|
eqeq12d |
|- ( y = B -> ( ( S ` ( A vH y ) ) = ( ( S ` A ) + ( S ` y ) ) <-> ( S ` ( A vH B ) ) = ( ( S ` A ) + ( S ` B ) ) ) ) |
16 |
10 15
|
imbi12d |
|- ( y = B -> ( ( A C_ ( _|_ ` y ) -> ( S ` ( A vH y ) ) = ( ( S ` A ) + ( S ` y ) ) ) <-> ( A C_ ( _|_ ` B ) -> ( S ` ( A vH B ) ) = ( ( S ` A ) + ( S ` B ) ) ) ) ) |
17 |
8 16
|
rspc2v |
|- ( ( A e. CH /\ B e. CH ) -> ( A. x e. CH A. y e. CH ( x C_ ( _|_ ` y ) -> ( S ` ( x vH y ) ) = ( ( S ` x ) + ( S ` y ) ) ) -> ( A C_ ( _|_ ` B ) -> ( S ` ( A vH B ) ) = ( ( S ` A ) + ( S ` B ) ) ) ) ) |
18 |
2 17
|
syl5com |
|- ( S e. States -> ( ( A e. CH /\ B e. CH ) -> ( A C_ ( _|_ ` B ) -> ( S ` ( A vH B ) ) = ( ( S ` A ) + ( S ` B ) ) ) ) ) |
19 |
18
|
impd |
|- ( S e. States -> ( ( ( A e. CH /\ B e. CH ) /\ A C_ ( _|_ ` B ) ) -> ( S ` ( A vH B ) ) = ( ( S ` A ) + ( S ` B ) ) ) ) |